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INTRODUCTION

After my medical school graduation, I aspired to pursue an
academic career. The only appointment available to me was
at an institute of public health. During the 5 years of prepa-
ration for my doctorate degree in public health, I enjoyed
gaining new knowledge of biostatistics and epidemiology,
but I missed direct patient care. I got special pleasure during
the performance of my thesis study on the epidemiology of
allergic disorders in school children, which incidentally was
just after the discovery of IgE.

On immigration to the United States, I decided to pursue a
career in clinical medicine. During my pediatrics residency
and allergy/immunology fellowship, I was able to perform
and publish a modest number of studies—primarily because
of my applying the principles of study design and data col-
lection, analysis, presentation, and interpretation. I came to
realize the value of my initial “detour” into the field of public
health, which continued to facilitate my academic career in
clinical medicine.

Even though I did not keep up with the advances in
statistical methods and computer-assisted programs, my
modest basic knowledge in statistics has been of signifi-
cant help. It is unfortunate that medical training does not
allow time for such an important subject, of value not just
to investigators but to readers of the scientific literature at
large. Books on statistical methods are numerous but
mostly voluminous and usually written by experts outside
the biomedical field. I became preoccupied with a desire to

prepare simplified information on the subject. My interest
became enhanced through encountering some colleagues at
my current institution who are giving scattered lectures on
statistical methods to residents and fellows. Their knowl-
edge and expertise far exceed mine, particularly in the use
of new technologies. We organized a weekend course on
statistics at our institution. It was very well attended,
surprisingly, more by members of the faculty, who were
required to pay fees, than by residents and fellows, whose
registration fees were waived.

My desire to prepare a simplified primer on statistics
became stronger while serving as a reviewer for journals and
on a few editorial boards. When I became Associate Editor of
the Annals of Allergy, Asthma and Immunology, I mentioned
my desire to the Editor-in-Chief, Gailen Marshall, MD, PhD,
who was very receptive and encouraging. This supplement to
the Annals was prepared in collaboration with my colleagues
Steven Conrad, MD, PhD, Jerry McLarty, PhD, and Runhua
Shi, MD, PhD, who have admirably presented complex topics
in a simpler and clearer way. I am very grateful for their
contributions. I hope that this supplement will help medical
trainees and clinicians of various specialties in their interpre-
tation of published data and their performing of research
studies.

In addition to my gratitude to my friend, Dr Gailen Mar-
shall, I thank the Annals’ editorial staff, particularly Ms Laura
King. I would also like to express my appreciation to my
colleagues in the leadership of the American College of
Allergy, Asthma & Immunology (ACAAI) for making Sta-
tistics for Clinicians available to so many by its publication as
a supplement to the College’s official journal.

Sami L. Bahna, MD, DrPH, ACAAI President (2009–2010), Department
of Pediatrics, Allergy and Immunology Section, Louisiana State University
Health Sciences Center, Shreveport, Louisiana, SBAHNA@LSUHSC.EDU
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Foreword

Statistics for Clinicians

“The data must be valid since the P value is less than .05.” Some
form of that statement has likely been made (or at least thought) by
most of us somewhere along our academic journey as we viewed
presentations or publications that made rather strong claims about
medication or procedural efficacies, risks, pathophysiologic differ-
ences, and other factors. But just what does a P value really mean?
And can something be statistically significant but clinically trivial?
Was the sample size sufficient to draw clinically useful conclusions?

As the Editor-in-Chief of the Annals, I am privileged to lead an
extraordinary team of associate editors and reviewers who address
these questions every day. As a clinical immunology and allergy
division director responsible for an accredited allergy/immunology
training program, I see fellows struggle to understand how to opti-
mally design an experiment, calculate a valid sample size, and select
the statistical tools they plan to use before they start an experiment.
As a researcher, I am constantly on guard during post hoc analysis
of data to attempt to minimize bias that affects the conclusions that
we draw from our data.

There are many biostatistics textbooks and courses available to
guide the proper use of statistical techniques. There are even some
simple “how-to” guides to “teach” statistics to the uninitiated. How-
ever, the utility of such tools is often limited unless one has access
to a full-time biostatistician—someone to whom our clinician read-

ers in practice and even fellows in many training programs often
have limited access.

When I was approached by one of our associate editors, Dr Sami
Bahna, about the possibility of putting together a work that would be
a resource in biostatistics, I was delighted to help him meet the need
by making this volume a reality for our readers. He assembled an
extraordinary team of statisticians, who have compiled a scholarly,
easy to understand, and, perhaps most importantly, practical guide
to statistics. This work will be of considerable use to practicing
clinicians and fellows in training as they critically read the literature
that will guide their future practice patterns and investigators, both
basic and clinical, as they generate new knowledge in a scientifically
and statistically valid fashion that will move our subspecialty for-
ward to better treatments for our patients.

The Annals is honored to host the publication of this supplement.
I extend my thanks to the authors, in particular Dr Bahna as guest
editor, for their skilled writing and composition of this tome. It
should be of considerable value to clinical medicine as a whole for
some time to come.

GAILEN D. MARSHALL, MD, PHD
Editor-in-Chief
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Research study design
Sami L. Bahna, MD, DrPH,* and Steven A. Conrad, MD, PhD†

INTRODUCTION
Study design is the most important first step in a research
project. Comprehensively, a research study comprises several
components, starting with stating clear objectives and ending
with conclusions and recommendations (Table 1). In general,
studies may be descriptive or analytical. Descriptive studies
provide description of a condition in one or multiple persons.
Analytical studies are based on certain hypotheses, follow a
specific protocol, and involve measurement, classification,
and statistical analysis of data. Research studies may be
classified into 2 main types, namely, epidemiologic and in-
terventional (Table 2).

EPIDEMIOLOGIC STUDIES

Descriptive Studies
In a descriptive study, the author describes the characteristics
of affected persons in a sample of one, a few, or a series of
subjects. Observations may include age, sex, occupation,
geographic distribution, physical findings, comorbid condi-
tions, specific associated factors, and others. This type of
study is easy and quick, but the provided information is
largely left up to the authors, and hence it can be incomplete
or biased. Statistical analysis would depend on the data
collected but typically includes descriptive and comparative
statistics.

Cross-sectional Studies
A cross-sectional study is the most common type of epide-
miologic study. It is usually intended to answer a question of
interest through collecting data on a population sample (a
cohort) and its exposure factors. Criteria are specified for the
target and accessible populations, and then appropriate meth-
ods are used for drawing the sample. The data to be collected
should be tailored toward answering the research questions.
The measurements are made once without a follow-up. It is a
snapshot of the condition as it exists in a certain sample at a
particular point of time or within a short interval. The cohort
sample size should depend on the frequency of the disease in
that population and the precision of estimate required (ie, the
lower the prevalence, the larger the sample needed; see the
article entitled “Sampling and Statistical Inferences” in this
issue).

Cross-sectional studies reveal prevalence, which is the
number of cases at one point in time divided by the number
of people at risk at that time. They have the advantages of
being relatively fast and inexpensive. In addition to describ-
ing the demographic and clinical characteristics of the study
group, they may reveal possible associations and generate
hypotheses for further studies. However, causal relationships
may be difficult to establish by cross-sectional studies. An-
other limitation is that they do not provide worthwhile infor-
mation on the prognosis or the natural history of the disease.
Serial cross-sectional studies on a particular population
would be valuable in providing information about changing
patterns of the disease over time.

Prospective Studies
Prospective studies are also called longitudinal, cohort, or
follow-up studies. In this type of study, an attempt at answer-
ing the questions of interest is performed by following up a
group of initially nonaffected subjects longitudinally to doc-
ument the development of the condition under study and the
possible causative factors. The subjects being followed up
may be enrolled as a cohort rather than individually in a
sequential manner. Follow-up can be periodic during a cer-
tain interval or at the end of the study duration. Prospective
studies may or may not include intervention. In the latter
case, a specific intervention (exposure or treatment) is ap-

Affiliations: *Department of Pediatrics, Allergy and Immunology Sec-
tion, Louisiana State University Health Sciences Center, Shreveport, Loui-
siana; †Departments of Medicine, Emergency Medicine, and Pediatrics,
Louisiana State University Health Sciences Center, Shreveport, Louisiana.

Disclosures: Authors have nothing to disclose.
Received for publication February 4, 2009; Received in revised form

March 27, 2009; Accepted for publication March 30, 2009.

Table 1. Components of Research Studies

State clear objective(s)
Delineate a hypothesis
Define the study population
Plan a sound study design
Choose appropriate methodology
Decide on a minimal valid sample size
Data collection and organization
Data analysis and presentation
Interpretation and discussion of findings
Conclusion(s) and recommendation(s)

Table 2. Types of Research Studies

I. Epidemiologic studies (observational)
A. Descriptive
B. Cross-sectional (survey)
C. Prospective (longitudinal, cohort, or follow-up)
D. Retrospective (case-control)

II. Interventional studies (clinical or experimental)
A. Therapeutic trials
B. Secondary prevention trials
C. Primary prevention trials
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plied to one cohort and comparison is made with another
similar cohort without intervention. Prospective studies have
several advantages and disadvantages (Table 3). The most
important advantage is the collection of complete and stan-
dardized data. The main disadvantages are the cost and long
duration of follow-up. Also, outflux or influx in the popula-
tion or changes in exposure can impose problems in data
analysis or introduce bias.

Retrospective Studies (Case-Control)
In retrospective studies, a group of cases of disease is iden-
tified and its exposure history is compared with that of a
control group from the same population. Retrospective stud-
ies are most desirable for studying diseases that have low
prevalence or that require a long induction or latent period to
develop, when exposure data are difficult to obtain, or when
the study population is dynamic. Case-control studies can
reveal factors that lead to the occurrence of disease and
estimate the risk and odds ratios. Their greatest advantages
are saving time and cost. A great limitation of retrospective
studies is recalling of past events or gathering data from
different sources that can vary in completeness or accuracy
(Table 4).

The definition of disease or case has a great impact on the
study findings. Validity of the results would depend on the
criteria being applied (ie, specific vs nonspecific and objec-
tive vs subjective). For example, a case of asthma in different
studies may be based on any of the following: self-diagnosis,
history of recurrent wheezing, diagnosis by any health care
professional, diagnosis by a specialist, response to broncho-
dilators, or specific pulmonary function test results. Inclusion
and exclusion criteria should be explicit and clear. Restrictive
criteria, though enhancing the purity of data, would reduce
the number of subjects. This issue is of great importance in
comparing the results of different studies. Once a case defi-
nition is settled, subjects can be identified through various
database sources known for their high accuracy and effi-
ciency (eg, clinics, hospitals, special registries). In some
instances, advertisements in media or in selected common
places can identify persons for screening.

The control group should be sampled independently of the
case group and must represent the source population. It can
be difficult to enroll controls for retrospective studies because
they do not have the same level of interest or the recalling of
past events as the cases do (recall bias). They should be
selected randomly from a well-defined population or sources

that guarantee no or minimal bias. The controls should be
matched with the cases regarding confounding factors that
might affect the development of the disease. The size of the
control group should preferably be at least equal to the case
group. Increasing the number of controls has the advantage of
slightly increasing the power of the study, but a ratio of up to
4 controls to 1 case would be sufficient to avoid increasing
the cost or duration of the study. Sometimes more controls
than cases are used to ensure generalizability of results or to
reduce the likelihood that unknown hidden variables may be
responsible for outcomes.

INTERVENTIONAL STUDIES
Interventional studies are typically either therapeutic or pre-
ventive in which a particular procedure or measure is being
evaluated regarding its efficacy and safety. Clinical or ther-
apeutic trials are intended to test the effect of a certain
treatment on the disease outcome. Secondary prevention
trials are intended to test the effect of a certain intervention in
preventing the recurrence or complication of a disease. Pri-
mary prevention trials are performed on apparently healthy
subjects with the objective of preventing the development of
the disease. To increase yield and cost-effectiveness, this type
of trial is usually performed on subjects at high risk of
developing the disease.

Subjects to be included in interventional trials are enrolled
according to clearly stated predetermined inclusion and ex-
clusion criteria. In addition to voluntary withdrawal by the
subject at any time during the study, there should be certain
criteria for withdrawing the subject before completing the
trial. It is important to follow up all patients who entered a
trial, even if they withdraw from the study because exclusion
of these subjects may introduce bias. Each trial may have one
or more well-defined end points and outcome measures,
preferably including objective ones. Limiting the number of
end points makes follow-up easier and also reduces the
chances of bias due to variations in the follow-up period
among subjects.

Crossover Designs
In studying chronic diseases, a certain therapy may be com-
pared with another while the subject serves as his/her own
control. Patients are randomly assigned to receive 2 types of
therapy in different sequences (ie, first treatment A then B or
first treatment B then A). The duration between the 2 treat-

Table 3. Advantages and Disadvantages of Prospective Studies

Advantages Disadvantages

Uniformity and completeness of data Require large sample size
Calculation of absolute and relative

risk
Long follow-up periods

Can have multiple end points High costs
Can study multiple outcomes Dropouts
Provide incidence

Table 4. Advantages and Disadvantages of Retrospective Studies

Advantages Disadvantages

Short duration
Low cost
Calculates odds ratios

Inaccuracy or incompleteness of data
because of the recall factor

Heterogeneity in data sources
May not identify weak exposure factors
Susceptibility to sampling bias of using

2 populations
Limited to one outcome measure
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ments (washout period) would depend on the duration of
effect of the drug therapy after its discontinuation (ie, carry-
over effect). The period of treatment with each drug depends
on the expected duration until maximal response. The major
limitation of crossover studies is the uncertainty of whether
there is a carryover effect or not, and if so how long the
washout period should be.

Factorial Designs
Interventional studies may need to address the effect of more
than one treatment regimen, each may include more than one
therapeutic agent or procedure. For example, a trial on pa-
tients with uncontrolled asthma may be designed to see
whether the addition of an oral antihistamine (anti-H1) or of
an oral leukotriene antagonist (LTA) to an inhaled cortico-
steroid (IC) would have a beneficial effect. The subjects
should be randomly assigned to 1 of 4 groups:

A. IC only
B. IC plus anti-H1

C. IC plus LTA
D. IC plus anti-H1 plus LTA
To avoid bias on the subject’s part, every patient in each

group should receive 3 “medications.” Therefore, group C
should receive a placebo in lieu of anti-H1, group B receives
a placebo in lieu of LTA, and group A receives 2 placebos:
one for anti-H1 and another for LTA. In this example, the
effect of anti-H1 is addressed by comparing group B with
group A, that of LTA by comparing group C with group A,
and that of the combination of anti-H1 and LTA by comparing
group D with group A. These comparisons are not performed
individually but as part of an overall factor analysis.

In designing clinical trials, provisions for intervention
should be in place for subjects whose disease deteriorates
during the trial. Subjects may be withdrawn from the trial or
may crossover from a treatment arm to the control arm if the
latter comprises standard of care. In an intent-to-treat ana-
lysis, subjects removed from their initial assigned group are
analyzed as if they remained in the group.

Control and Placebo Groups
Comparative therapeutic trials test the efficacy of one or more
treatments against a control group. The control group is the
benchmark against which an improvement is sought. The
preferable type of control group is the placebo or an inactive
treatment. A finding of efficacy is then conclusive evidence
that the treatment has an effect. Although placebo groups are
preferred, there may be ethical reasons to use an active
control, which is an existing, approved, or widely accepted
treatment that, if withheld, would deprive the subject of
standard care. Although the trial may be designed to demon-
strate efficacy over that of the active control, a more common
approach is a noninferiority design, with the goal of demon-
strating efficacy equal to that of an accepted therapy. The
major pitfall of noninferiority designs is that the accepted
therapy used as an active control may not have achieved its
status as standard of care through rigorous trial design, and

therefore demonstration of noninferiority would not neces-
sarily equate to efficacy.

Intent to Treat
In any clinical trial, some subjects who have been enrolled in
the study and have been randomized to receive the treatment
may drop out of the study at any time. Or, some patients in
the placebo arm of the study may start taking the active drug
on their own; these are called drop-ins. In either case, it may
be preferable to compare the intent to treat of one group with
the intent to treat of another group (ie, proceed with the
analysis as if no patient dropped in or out). Exclusion of such
patients not only reduces the sample size but may introduce
bias, particularly if the withdrawal was because of a negative
outcome during the treatment. However, if some patients
after enrollment were found to be ineligible for the trial, they
should be excluded.

QUESTIONNAIRE DEVELOPMENT
Using questionnaires is a common way of gathering uniform
data in clinical studies. They may be completed by the
responder (self-administered), by an interviewer, or by a
combination. Both methods are susceptible to errors imposed
by the memory effect and the tendency of responders to
provide socially acceptable answers. The advantages and
disadvantages of each method are summarized in Table 5.
Telephone interviews can reduce the cost but may be difficult
to conduct at an optimally convenient time to the subject or
to the staff.

General Principles of Questionnaire Design
Designing an attractive, easy to complete questionnaire is of
utmost importance in increasing the rate of response and the
completeness and accuracy of data.
• At the beginning, include a brief description of the purpose

of the study and how the data will be used.
• Provide simple clear instructions on how the questionnaire

be filled.
• Begin with identification data: name (unless anonymous),

age or birth date, sex, address (or geographic location),
method of contact (eg, telephone, e-mail, fax), and date of
completing the questionnaire.

• The number and contents of questions depend on the data
that need to be collected. Questions relevant to a certain
issue should be grouped together under a heading or short
statement.

The questions may be constructed in 2 ways. Open-ended
questions have the advantage of obtaining answers in the
responder’s own words but the disadvantage of difficulty to
code or group so that statistical analysis is feasible. Closed-
end questions ask the respondent to choose from preselected,
mutually exclusive potential answers, which saves time and
allows easy grouping and analysis. This method has the
disadvantage of limiting the answers to the investigator’s
choices and may not reveal important unexpected responses.
This can be overcome by adding a category of “other (spec-
ify).” Providing only 2 potential answers may be suitable for
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certain qualitative variables but may not be optimal for quan-
titative variables. The responder may be asked to choose only
1 answer or all that apply or to give a rank. Certain questions
may include the option of “nonapplicable” or “do not know.”
Questionnaires should be designed such that all questions are
answered or denoted as not applicable or not answered. It is
essential to data analysis to know whether a data value is
missing or not. In some situations, blanks may be erroneously
interpreted by statistical software as having a value of 0.
• Questions should be constructed with utmost neutrality,

clarity, and simplicity.
• Borrow from others (ie, take advantage of questionnaires

used in previous similar studies with the privilege of
modifications).

• Quantitative categories should encompass the whole an-
ticipated range, meaningfully classified, and should be
exclusive (ie, the beginning of a category should not be the
end of the preceding category).

• The sequence of potential responses should be in a logical
order to facilitate answering and later coding.

• The questionnaire should be reviewed by experienced col-
leagues, including the statistician who will be involved in
the data coding and analysis.

• Pretesting should be performed first on a small number of
potential responders and after revision on a larger number.
This process may result in clarification, estimation, or
addition of questions.

• Interviewers should be selected for high skill and should
receive training on administering the questionnaire to
maximize the accuracy and minimize introducing bias.

• The final findings’ reliability largely depends on the ac-
curacy and completeness of data collected. Methods for
handling missing values should be explicit in advance of
data collection.

CLINICAL TRIAL PHASES
Development of new drugs begins in the laboratory through
biochemical procedures and animal experiments. Once those

preclinical tests show promise of efficacy and probable
safety, human trials can be performed in phases, usually 3,
before their approval for marketing. A postmarketing fourth
phase may be performed for additional purposes. Study de-
sign parameters, such as the need for control groups, random-
ization, and sample sizes, may differ considerably for each of
the 3 study phases.

Phase 1
This preliminary trial is performed on a small number of
patients (usually 20 to 30) primarily to determine the drug’s
safety. It involves frequent visits for recording symptoms,
physical findings, and laboratory tests that may include com-
plete blood cell count, liver function, renal function, electro-
cardiogram, etc. Different dosage regimens may be tested to
determine the dose that causes minimal adverse effects. This
phase is most commonly performed on healthy male volun-
teers and in addition to safety testing includes pharmacoki-
netic and pharmacodynamic studies in humans. Additional
phase 1 trials may be performed on the target population
(those with the disease to be treated) because the drug’s
pharmacokinetics and pharmacodynamics and safety may be
altered in this group. In the case of toxic treatments, for
example, cancer chemotherapy or radiation, it is unethical to
use healthy volunteers, so actual patients with the disease
must be the study subjects.

Phase 2
Once phase 1 shows an acceptable safety profile, the drug can
be tested in a larger number of patients (usually �100)
primarily for efficacy but also for safety. In this phase, the
drug may be compared with a placebo or a current standard
treatment in a double-blind fashion (ie, neither the patient nor
the assessing investigator is aware of the type of treatment).
This phase also involves frequent visits and laboratory tests
but often less than what was recorded in the phase 1 trial. The
sample size is typically small, and phase 2 findings are used
to support the decision to move to phase 3 trials for purposes

Table 5. Comparison Between Self-Administered and Interviewer-Administered Questionnaires

Type Advantages Disadvantages

Self-administered Low cost
Can be anonymous to protect privacy and

encourage honest answers
Exclude potential bias by interviewers
Mailed questionnaires allow convenience for

responders and time to recall or gather
information

Potential misunderstanding of questions
Incomplete or inaccurate data
Poor handwriting
Low return rate
Influenced by the subject’s degree of

literacy

Interviewer-administered Interviewer can clarify questions
Low effect of subjects’ literacy level
High degree of accuracy and completeness
Allows interviewer to collect observational

information or administer certain tests

Does not protect privacy
Responders may provide socially

acceptable answers resulting in
inaccurate data

Very personal questions may not be
answered

Require more staff, time, and cost
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of approval. There may be more than one treatment arm to
further evaluate optimal dosing if phase 1 data are not con-
clusive.

Phase 3
After documenting a statistically significant efficacy of the
new drug (usually above placebo), the drug is tried in a larger
number (hundreds or thousands) of patients, primarily fo-
cused on efficacy while continuing to monitor safety. A
head-to-head comparison is performed against a placebo con-
trol or a currently accepted treatment (active control) if a
placebo would be unethical, usually in equal proportions.
Monitoring this phase may include fewer parameters than in
phase 2, unless findings from phase 2 warrant closer moni-
toring. Patients are randomly assigned to either treatment or
control in a double-blind fashion. One, or typically more, of
these phase 3 (registration) trials is performed for drug ap-
proval. In the United States, the decision for approval is made
by the Food and Drug Administration based on a sound study
design, significant efficacy, and an acceptable safety profile.

Phase 4
After marketing of the drug for some years, the manufacturer
may choose to perform postmarketing clinical trials. The
objective of the trial may be to compare the drug with other
available treatments, to investigate the efficacy and safety of
new dosage or combination regimens, or to explore new
potential indications for the drug.

BIAS AND ITS SOURCES
Bias has a systematic influence on the observations in a trial.
Bias can occur at any stage of the study and can have various
sources. Its direction may be toward or away from the null

hypothesis. Its impact would depend on its degree. Every
effort should be made to prevent it through a sound study
design and careful performance of the study, beginning with
the selection of the subjects, collection of measurements, and
data analysis, presentation, and interpretation. Bias is of 2
main types: selection and observational.

Selection bias can arise from differences in selecting or
following up the study groups. Therefore, it can occur from
inappropriate selection of cases or controls, self-selection of
subjects, or differential loss to follow-up.

Observational bias arises from differences in the way of
collection of data. It can lead to enrolling subjects whose
disease or exposure is incorrect. Its sources can be poor recall
of past information, suboptimal interview method, or inter-
viewer’s error in obtaining measurements or data collection.
Observational bias can be prevented by ensuring impartiality
of the interviewers and the study subjects, appropriately de-
signing the questionnaire or data collection form, and ensur-
ing high accuracy of data.
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Descriptive statistics
Runhua Shi, MD, PhD, and Jerry W. McLarty, PhD

INTRODUCTION
Statistics can be thought of as 2 distinct activities: descriptive
statistics and inferential statistics. As its name implies, de-
scriptive statistics describe the characteristics of data. Infer-
ential statistics on the other hand take a more experimental
approach to the analysis of data and consist of testing hy-
potheses about the data and inferring properties of a popula-
tion from samples. In this article, the basic concepts of
statistics, type of distributions, and descriptive statistics will
be presented. A few examples will be provided to illustrate
the concepts.

BASIC CONCEPT OF STATISTICS

Statistics
Statistics is the field of study concerned with the collection,
organization, summarization, and analysis of data and the
drawing of inferences about a body of data when only a part
of the data is observed. Biostatistics is application of statis-
tical tools in the field of biological sciences and health.

Descriptive Statistics
Descriptive statistics is the information used to describe the
data or statistics, such as the average values of the data and
how variable they are and what shape the distribution of data
takes.

The raw material of statistics is called data. The data are
the numbers that result from measurements or counting. The
sources of data are included but not limited to the following:
routinely kept records, survey results, experiment results, and
electronic databases.

It is necessary to introduce some basic concepts related to
statistics before the statistics for different distributions are
discussed. These concepts include the definitions of a vari-
able, a random variable, measurement scale, quantitative
variables, and qualitative variables.

A variable is an observable characteristic that takes on
different values for different people, places, or objects. For
example, age is a variable and it can range from 0 to 120
years.

A quantitative variable is a variable that is measured and
conveys information regarding amount. For example, age is a
quantitative variable that can have a numerical value.

A qualitative variable is a variable that conveys informa-
tion regarding attribute. These attributes can be counted. For

example, sex is a qualitative variable; it has a value of male
or female.

A random variable is a variable whose values arise as a
result of chance factors and cannot be exactly predicted in
advance. For example, age can be a random variable in a
study if each person’s age is not known in advance. If a
random variable is a qualitative variable, then we call this a
discrete random variable (ie, a random variable that is char-
acterized by gaps or interruptions in the values that it can
assume; eg, male or female).

If a random variable is a quantitative variable that does not
possess interruptions or gaps, we call this a continuous ran-
dom variable. It can take any numerical value, including a
fraction.

A population of entities is defined as the largest collection
of entities for which we have an interest at a particular time,
for example, the whole US population (300 million, all pa-
tients with asthma, and all children younger than 10 years). A
sample is a smaller subset of individuals that we may have
access to for study. For example, people in one state, patients
with asthma who are seen at one medical center or hospital,
and children younger than 10 years who are patients in a
particular clinic.

MEASUREMENT AND MEASUREMENT SCALE

Measurement
Measurement is the assignment of numbers to objects or
events according to a set of rules. This is important statisti-
cally because the type of data can determine the type of
descriptive statistics or analytical techniques to be used.

The Nominal Scale
The nominal scale consists of naming observations or clas-
sifying them into various mutually exclusive and collectively
exhaustive categories. For example, sex can be measured on
a nominal scale as male and female.

The Ordinal Scale
The ordinal scale consists of ranking observations according
to some criterion. For example, education level can be an
ordinal scale from grade 1 to grade 12. However, with some
ordinal data there is no assumption about distance between
levels. For example, variables with values such as mild,
moderate, or severe might be coded as 1, 2, and 3, respec-
tively. However, it cannot be assumed that moderate (2) is
twice as bad as mild (1) or that the difference between 1 and
2 is the same as the difference between 2 and 3.

The Interval Scale
The interval scale consists of ordered measurements with a
well-defined distance between 2 measurements; for example,
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body temperature of 98.6°F0 or 37°C0. For both temperature
scales, the definition of 0 is arbitrary.

The Ratio Scale
The ratio scale consists of using a measurement scale that
contains a true zero point and can be expressed as the ratio of
2 numbers. Ratio data can have an infinite number of values.
Weight, blood pressure, and serum cholesterol level are ex-
amples of ratio level data.

DESCRIPTIVE STATISTICS
Descriptive statistics are used to describe the basic features of
the data gathered from an experimental study in various
ways. They provide simple summaries about the sample and
the measures. The measures of location, spread, or dispersion
are frequently used statistics.

The measures of location describe where the center, mid-
dle, or most of the data are located. The arithmetic mean,
median, mode, and geometric mean are commonly used lo-
cation measures.

The arithmetic mean is one of the measures for location
and is the sum of all observations divided by the number of
observations. The mean value is what is referred as the
average.

If we denote a set of data by X � (x1, x2, …, xn), then the
sample mean is typically denoted with a horizontal bar over
the variable:

X �
1

n �
i�1

n

Xi .

For example, a data set includes these values: 1, 10, 100,
1,000, 10,000, and 100,000. The arithmetic mean is (1 � 10
� 100 � 1,000 � 10,000 � 100,000)/6 � 18518.5.

The median is the middle value of the series of measure-
ment. The sample median can be derived as when n is odd:
the median is the [(n � 1)/2]th observation. For example,
there are sorted 9 records about worker’s age; these are 23,
23, 24, 28, 30, 40, 43, 44, and 48. Because n � 9, the median
is (9 � 1)/2 � (10/2) � 5th observation (median � 30). The
number of observations below the age of 30 years is the same
as the number of observations above the age of 30 years.

When n is even, the median is the average of the (n/2)th
and (n/2 � 1)th observation. For example, there are sorted 10
records about worker’s age; these are 23, 23, 24, 28, 30, 38,
40, 43, 44, and 48. Because n � 10, the median is the average
of 10/2 � 5th and 10/2 � 1 � 6th observations; it is (30 �
38)/2 � 34. The median differs from the mean in being not
affected by extreme values. For example, the median of 3
numbers, say, 3, 5, and 7, is 5, but the median of 3, 5, and 70
is also 5. This is often useful when data are nonsymmetric or
skewed.

The mode is the most frequently occurring value among all
the observations in a sample. For example, there are 10
records of age in a study, such as 23, 23, 24, 28, 28, 28, 30,

40, 43, and 44. The mode is 28. A certain variable may have
more than one mode.

Geometric mean may be appropriate to show the location
of the data that are not normally distributed. The geometric
mean (Xg) is computed by the following formula:

Xg � �nX1,...,Xn � �
i�1

n

Xn
(1/n)

Logarithmic identities can be used to transform the formula
as following:

log10 xg �
1

n
(log10 x1�..�log10 xn).

Any base can be used to compute logarithms for the geomet-
ric mean. The geometric mean is the same regardless of
which base is used. The only requirement is that the logs and
antilogism should be in the same base. For example, these
laboratory data are not normally distributed: 1, 10, 100,
1,000, 10,000, and 100,000. The logs of these values are
log10 (1) � 0, log10 (10) � 1, log10 (100) � 2, log10 (1,000) �
3, log10 (10,000) � 4, and log10 (100,000) � 5. Then the
mean of these values is (0 � 1 � 2 � 3 � 4 � 5)/6 � 2.5.
The geometric mean of these data are geomean � 102.5 �
316.23.

For symmetric distributions, the mean, median, and mode
are the same. However, for highly skewed data, the differ-
ences can be considerable. The median in this case is a
better representation of the center of the distribution than the
mean.

Measures of Spread and Dispersion
The measures of locations are a reflection of the data central
tendency, and the measures of variability are a reflection of
the data spread or dispersion. The range, percentiles or quan-
tiles, variance, and SD are frequently used statistics for mea-
sures of dispersion.

The range is the distance between the lowest and the
highest values.

The percentiles or quartiles divide the data into parts, for
example, the highest third, the middle third, and the lowest
third. The 25th and 75th percentiles are also called first and
third quartiles, and the median is the 50th percentile.

The variance is a measure of the difference of each value
from the mean value. Sample variance or variance is defined
as follows: if we denote a set of data by X � (x1, x2, . . . , xn),
then the sample mean is typically denoted with a horizontal
bar over the variable

x �
1

n �
i�1

n

xi

and the sample variance is denoted with
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s2 �
1

n�1 �
i�1

n

(xi � x)2.

Variance is an average of the squared distance from each
observation to the sample mean.

The SD is a measure of dispersion expressed in terms of the
original units. A sample SD is the square root of sample
variance.

s �� 1

n�1 �
i�1

n

(xi � x)2

For example, in a group of values of 1, 2, 3, 4, 5, and 6, the
mean is 3.5. The SD can be calculated as follows:

s � � 1

6 � 1
��1 � 3.5�2 � �2 � 3.5�2 � .. � �6 � 3.5�2� � 1.87

The variance of these data is 3.5 and the SD is 1.87. For a
normal distribution, the mean � 2 SDs contain approximately
95% of the data.

TYPE OF DISTRIBUTIONS
Most statistical tests are based on the distribution of the data,
which describes how often certain values occur, the range of
values, and the shape of the probability and value curve. This
is necessary to convert ideas and words into probabilities that
can be used for statistical decision making. Distributions are
based on the probability of the value or range of values of a
particular variable. For example, Figure 1 shows the histo-
gram of diastolic blood pressure in a sample of healthy
individuals. The horizontal axis is the value of blood pressure
in several different ranges, and the vertical axis is the count
or number of individuals whose diastolic blood pressure falls
within a range (eg, 90 to 95 mm Hg). If we could sample
many people and divide the data into smaller and smaller

Figure 1. Histograms of the diastolic blood pressure of healthy individuals of different sample sizes. A, Sample size of 50; B, sample size of 500; C, sample
size of 5,000; D, sample size of infinity.
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ranges, the bumps in the curve would probably smooth out
(Fig 1A-D). Finally, if we replaced counts with probabilities
(by dividing the height of each bar by the total number of
individuals in the sample, we would approximate a statistical
distribution, in this case a “normal” distribution. Mathemat-
ically, distributions assume sampling an infinitely large num-
ber of individuals and classifying them into infinitesimally
small ranges. The sum of all the probability densities (the
area of a distribution curve) adds to 1.0.

The 4 most commonly used distributions are the normal
distribution, Student t distribution, binomial distribution, and
�2 distribution. Their means and variances are described
briefly.

Normal Distribution
The normal distribution, also called the gaussian distribution,
is an important family of continuous probability distributions.
Two parameters (location and dispersion) can be used to
define each member of the family.

The normal distribution is the most widely used family of
distributions in statistics, and many statistical tests are based
on the assumption of normality. Fortunately, many variables
in nature have a normal distribution; examples include blood
pressure, temperature, adult height, spirometry, and many
common serum components. The importance of the normal
distribution as a model of quantitative phenomena in the
biological and behavioral sciences is in part due to the central
limit theorem. Many measurements can be approximated by
the normal distribution. The normal distribution also arises in
many areas of statistics. For example, the sampling distribu-
tion of the sample mean is approximately normal, even if the
distribution of the population from which the sample is taken
is not normal.

The continuous probability density function of the normal
distribution is the gaussian function:

f(x) �
1

��2�
e�

(x��)2

2�2

where � � 0 is the population SD, and the real parameter �
is the expected value (population mean). A normal distribu-
tion with mean 0 and variance 1 is called a standard, or unit,
normal distribution. This distribution is also called an N(0, 1)
distribution.

Figure 1 shows histograms of hypothetical samples of
diastolic blood pressure of healthy individuals of different
sample size. The frequency count in a particular interval
divided by the total sample size can be thought of as proba-
bility of occurrence of that interval value (relative fre-
quency). As the sample size (number of individuals sam-
ples) increases (Figure 1A-C), the interval gets smaller and
the curves become smoother. When the sample size increases
to infinity, the curve approaches the symmetric bell shape
characteristic of a normal distribution (Fig 1D). The vertical
axis (Fig 1D) is in terms of probability density not counts.
The area under the whole curve is 1.0, which is true for all

statistical distributions. The area under any portion of the
distribution curve, for example, between 80 and 90 mm Hg,
is the probability of a randomly sampled individual for this
population having a diastolic blood pressure between 80 and
90 mm Hg.

The graph of probability density function is plotted in
Figure 2 for a standard normal distribution with mean � 0
and SD � 1 and mean � 0 and SD � 	2. The density
function follows a bell-shaped curve, with the mode at the
mean and most frequently occurring around the mean. The
curve is symmetric around the mean with the point of inflec-
tion on each side. The larger the SD, the more spread in the
distribution.

Once a set of data are collected, usually the first step is to
check its normality. If the normality is met and observation is
independent then the method to compute the statistics (ie,
arithmetic mean) can be used. Otherwise, the transformation
of data are necessary before estimation can be made or
special nonparametric methods of analysis can be used.

Several tests can be used to check a given set of data for
similarity to the normal distribution. The null hypothesis in
this test is that the data set is similar to the normal distribu-
tion; therefore, a sufficiently small P value indicates nonnor-
mal data. These tests include but are not limited to the
Kolmogorov-Smirnov test, Shapiro-Wilk test, and normal
probability plot. These tests can be easily performed by using
statistical software, such as SAS and SPSS.

The methods for transformation to satisfy the normal dis-
tribution include the logarithmic transformation, square root
transformation, and reciprocal transformation. Again, once
the transformation is made, the normality test is also needed.

Student t Distribution
Student t distribution and Student t tests are 2 different
concepts. Student t distribution (or simply the t distribution)

Figure 2. Comparison of normal distribution with mean 0 and variance 1
(N(0, 1)) and normal distribution with mean 0 and variance 2 (N(0, 2)). The
horizontal axis is the value of X, and the vertical axis is the frequency at
which X occurs (probability).

VOLUME 103, OCTOBER, 2009 S11



is a probability distribution that arises in the problem of
estimating the mean of a normally distributed population
when the sample size is small. Student t distribution is the
basis of the popular Student t test for the statistical signifi-
cance of the difference between 2 sample means, for confi-
dence intervals, and for the difference between 2 population
means.

The Student t test is any statistical hypothesis test in which
the test statistic has a Student t distribution if the null hy-
pothesis is true. It is applied when the population is assumed
to be normally distributed but the sample sizes are small.

The overall shape of the probability density function of the
t distribution resembles the bell shape of a normally distrib-
uted variable with a mean of 0 and a variance of 1, except that
it is a bit lower and wider. As the number of degrees of
freedom increases, the t distribution approaches the normal
distribution with a mean of 0 and a variance of 1.

Suppose we have a simple random sample of size n
drawn from a normal population with mean � and standard
deviation �. Let x denote the sample mean and s the
sample SD. Then the quantity

t �
x��

s/�n
has a t distribution with n � 1 degrees of freedom, where s

is denoted by

s � � 1

n�1 �
i�1

n

(xi � x)2.

The larger the degrees of freedom, the closer the t density is
to the normal density. This reflects the fact that the SD s
approaches � for large sample size n. The distribution de-
pends on n � 1 but not on the population mean and variance.
The t test will be discussed in detail in another article in this
issue.

The Binomial Distribution
The binomial distribution is the discrete probability distribu-
tion of the number of successes in a sequence of n indepen-
dent (success/failure, 0/1, or yes/no) experiments, each of
which yields success with probability p. The binomial distri-
bution is the basis for the popular binomial test of statistical
significance. A binomial distribution should not be confused
with a bimodal distribution. The mean and variance of a
binomial distribution (with number of trails n and each trial
with a probability of success p) are x � np and �2 � np(1 �
p), respectively.

An elementary example is this: roll a standard dice 10
times and count the number of 6’s. The outcome in each roll
is either a 6 or not a 6. The distribution of this random number
is a binomial distribution with n � 10 and p � 1/6. The mean

and variance of this binomial distribution are x � np �
10*1/6 � 1.67 and �2 � 10*1/6(1 � 1/6) � 1.39, respec-
tively.

Figure 3 shows the comparison of a binomial distribution
with different numbers of trials (n) and each trial with a
probability of success (p) of 0.1. As the number of trials
increases, the binomial distribution approaches the normal
distribution with mean np and variance np(1 � p).

�2 Distribution
The �2 distribution is one of the most widely used theoretical
probability distributions in inferential statistics (ie, in statis-
tical significance tests). It is useful because, under reasonable
assumptions, easily calculated quantities can be proven to
have distributions that approximate to the �2 distribution if
the null hypothesis is true. The best known situations in
which the �2 distribution is used are the common �2 tests for
goodness of fit of an observed distribution to a theoretical one
and of the independence of 2 criteria of classification of
qualitative data.

If Xi are n independent, normally distributed random vari-
ables with mean 0 and variance 1, then the random variable

Q ��
i�1

n

Xi
2

is distributed according to the �2 distribution with n degrees
of freedom. This is usually written as Q 
 �n

2. In statistics, the
phrase degree of freedom is used to describe the number of
values in the final calculation of a statistic that are free to
vary.

Figure 3. Comparison of binomial distributions with the probability of
success at 10% and the number of trials at n � 20, n � 40, and n � 80.
Represented by B (XP20, 0.1), B (XP40, 0.1), and B (XP80, 0.1), respec-
tively. With the n increase, the probability of number of successes (X) tends
to be normally distributed. The horizontal axis is the number of successes
(X), and the vertical axis is the probability that X occurs.
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A �2 test is any statistical hypothesis test in which the test
statistic has a �2 distribution when the null hypothesis is true
or any in which the probability distribution of the test statistic
(assuming the null hypothesis is true) can be made to approx-
imate a �2 distribution as closely as desired by making the
sample size large enough.

Some examples of �2 tests where the �2 distribution is only
approximately valid are the Pearson �2 test, also known as the
�2 goodness-of-fit test or �2 test for independence, and the
Yates �2 test, also known as Yates correction for continuity.
The Mantel-Haenszel �2 test, also known as stratified �2 test
to control for the potential confounders.

A �2 test may be applied to a contingency table for testing
a null hypothesis of independence of rows and columns. �2

tests will be discussed in detail in another article in this issue
on statistical tests for more than 2 samples.

SUMMARY
In this article, we introduced basic concepts of statistics, type
of distributions, and descriptive statistics. A few examples

were also provided. The basic concepts presented herein are
only a fraction of the concepts related to descriptive statistics.
Also, there are many commonly used distributions not pre-
sented herein, such as Poisson distributions for rare events
and exponential distributions, F distributions, and logistic
distributions. More information can be found in many statis-
tics books and publications.
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Data presentation
Sami L. Bahna, MD, DrPH,* and Jerry W. McLarty, PhD†

INTRODUCTION
Organization and summarization of data are prerequisites for
appropriate analysis, presentation, and interpretation. Effec-
tive data presentation can be used not only to summarize and
communicate findings but also to aid in quality control, data
cleaning, and error identification and to help determine the
analytical strategy. The presentation process depends on
the type of data, the complexity of the information, and the
objective of the display.

TYPES OF DATA
Data collected during an experiment or trial can take on a
constant value or have varying values. In the case of constant
data, the observed data has a fixed value (eg, number of eyes
or the number of fingers on one hand). Constant data usually
form the basis for experimental design rather than observed
data. Variable data take on varying values that can be clas-
sified as qualitative or quantitative.

Categorical Data
Data that can be assigned to one of a set of discrete, usually
predefined, categories are termed categorical data. In analy-
sis of categorical data, the categories may be used as factors
in experimental design. For example, a study may involve the
numbers of males and females who have been enrolled in a
clinical trial. In this case, male and female are predefined
categories, the numbers of each are the observational data,
and the analysis may involve comparison of the number of
males vs females. Categorical data may also be treated as
observational data and can be used in analyses such as logis-
tical regression. Consider as an example the measurement of
B-type natriuretic peptide along with the observation of the
heart failure classification of each subject. Logistical regres-
sion can be used to define whether there is a linear relation-
ship between B-type natriuretic peptide level and clinical
expression of heart failure.

It is not uncommon to create categories from noncategori-
cal data. In place of using age (a quantitative variable) in a
pediatric study, one may wish to assign subjects to the cate-
gories of neonate, infant, child, and adolescent. Although this
may be helpful for clinical purposes, it changes the way this
variable can be used in data analysis.

Categorical data are of 3 fundamental types, nominal,
ordinal, and interval, based on the relationship among the
assigned categories.

Nominal data are categorical data that can be described
only by a name, for example, allergy manifestation (rhinitis,
asthma, urticaria, or eczema), race or ethnic origin (white,
black, Hispanic, or Asian), and state of residence (Alabama,
California, Florida, and so on). The categories are not related
to each other with respect to value or order. Although their
listing does not have to follow a particular order, they may for
convenience be arranged alphabetically or according to some
other designation, such as frequency of occurrence.

Ordinal (or ranked) data are categorical data that follow a
certain order, for example, disease severity (mild, moderate,
or severe) or faculty rank (instructor, assistant professor,
associate professor, or professor). Ordering does not neces-
sarily imply equal intervals among ranks. The categories may
exist as named or numbered categories. For analytical con-
venience, named categories may be assigned numbers. Num-
bered categories or numbering schemes, such as 1 for mild, 2
for moderate, and 3 for severe, appropriately designate rank-
ing, but a score of 2 is not necessarily twice the effect as a
score of 1, and the difference in disease severity between
scores 1 and 2 may not be the same as the difference between
scores 2 and 3.

Interval data are categorical data that have a predefined
ordering and a constant interval or effect relating the catego-
ries. The months of the year represent an interval scale
because each is represented by (approximately) 30 days.
Assigning quantitative data to 1 of 4 quartiles representing
the range of the data, or age to equal bins of 5 years, would
also represent interval scales.

Quantitative Data
Quantitative data are data that are numerical and exist over a
range of values. The number representing a quantitative ob-
servation can be continuous or discrete.

Continuous data are numeric measurements on variables
that can take on any value and in which the measurements
include a high degree of precision. Data of this type com-
monly include a fractional component, such as the measure-
ment of cardiac output as 4.36 L/min. Data without fractional
components can also be considered continuous if the number
of potential values is relatively high, such as B-type natri-
uretic peptide, which can range from less than 100 ng/L to
more than 10,000 ng/L.

Discrete data are those that can take on only certain values
rather than any value. These are usually represented as an
integral value. Implied in this definition is that the range of
values is relatively wide. Although interval (categorical) data
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as described in the previous section could also fit in this
definition, interval data are generally limited to a small num-
ber of categories, typically less than 5 to 10 categories. In
practice, discrete data most commonly represent an integral
approximation of a continuous variable, such as age when
represented in years or heart rate when represented as beats
per minute. Age and heart rate could easily be measured to a
much higher precision than their integral values, but the
number of age or heart rate values that can be observed is
sufficiently large to assume the characteristics of quantitative
data. When this is the case, we can apply parametric statistics
to these data.

METHODS OF DATA PRESENTATION
Presentation of data may take 3 forms, often combined: text,
tables, and graphs. A good rule of thumb, as described by van
Belle, is to “use sentence structure (ie, text) for displaying 2
to 5 numbers, tables for displaying more numerical informa-
tion, and graphs for complex relationships.”

Text Presentation
Describing the data in a text form is the most common but not
always the best method. It is usually the simplest but has a
suboptimal readability rate and does not have the visual
impact of the other 2 forms. Its comprehension can be en-
hanced by constructing short sentences and using simple, yet
grammatically correct, language.

Tabular Presentation
Tabular presentations are common and popular. Tables can
include informative details with a visual effect better than the
text’s. A table’s readability and visual impact depend on its
design. Tables can be simple, representing 1 variable, or
compound, representing 2 or more variables. Complex tables
with numerous variables have low readability rates.

The principal variable in the table (usually the first col-
umn) may be categorized as follows: an array, where quali-
tative variables may be listed in any preferred way, but
quantitative variables should be categorized in an ascending
or descending order, or a frequency distribution, in which
distributing the observations in class intervals of a reasonable
number to reveal a trend or the type of distribution.

Recommendations on the use of frequency distributions
include the following:
• The class intervals should allow the inclusion of every

possible observation by having a definite beginning and an
end to avoid overlap. For example, a group of children 1 to
�15 years of age may be classified as 1 to 4 years, 5 to 9
years, and 10 to 14 years; and not 1 to 5 years, 5 to 10
years, and 10 to 15 years. Accordingly, a child who just
turned 5 years will be in the second category not the first.

• Avoid open-end intervals (eg, �5 years or �10 years).
Such intervals are more likely to be associated with errors
and may result in erroneous computations or graphic pre-
sentation.

• Choose a number of categories that can reveal trends and
facilitate appropriate analysis. A category that has a low
frequency may be combined with another.

• Any categories with low frequencies that cannot be com-
bined with the others may be combined together in one
category as “other.”

• Minimize the construction of intervals of unequal width. A
high frequency may give a wrong impression of impor-
tance to a category merely because it is wider than the
others. In such situations, adjusted frequencies (according
to the width of the category) should be considered. In
certain situations, however, the use of unequal intervals of
classification would be appropriate, for example, classifi-
cation according to developmental age: infancy (0 to �1
year), childhood (1 to �12 years), adolescence (12 to �18
years), and adulthood (�18 years).

• The frequencies may be expressed as absolute numbers,
percentages (relative frequencies), or preferably both. The
inclusion of actual numbers is particularly necessary when
the frequency is low.

• In presenting computed values, rounding the number and
choosing the place of the decimal point follow common
sense (ie, according to the desired degree of precision or
the relative value of the fraction compared with the whole
number).

• Cumulative frequencies can be categorized in an ascend-
ing or descending manner. The former starts with a “less
than” category that includes the lowest frequency, whereas
the descending cumulative frequency starts with a “greater
than” category that includes the total number.

Table Composition
The informative value of the table depends on its construc-
tion. The following principles should be helpful:
• The title should be concise yet sufficiently descriptive to

stand by itself without requiring the reader to search the
text for clarifications. Many prefer reading tables rather
than text.

• The rows and columns should have clear headings and
subheadings (if applicable) and must include the relevant
unit of measure (eg, number, percentage, lb, kg, U/mL,
mg/dL; the latter should not be expressed as mg%).

• A footnote below the table should be for clarifications or
spelling of abbreviations that have been indicated by spe-
cific symbols in the table.

• If the table includes data from previous publications, the
source should be included as a footnote.

• Tables being prepared for publication need to follow in-
structions provided by the publisher.

Graphic Presentation
Graphs, also referred to as figures, charts, or diagrams, have
the quickest, strongest, and most long-lasting visual impact
but often lack precision. Their impact can be enhanced by
inserting selected data (eg, the number of subjects in each
group). Graphs are excellent for demonstrating trends or
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comparisons. Information displayed in a graph is often de-
rived from tabulated data. Graphs may be used as a substitute
for tables or in addition to tables to highlight certain data
selected from a table and are especially good when relation-
ships among variables are complex.

Most graphs require a vertical scale (y-axis) and a hor-
izontal scale (x-axis); one may represent numerical values

and the other may represent quantitative or qualitative
variables. Equal intervals on an arithmetic scale should
represent equal differences in value. The graph’s title
should be sufficiently descriptive yet concise. Whereas a
table’s title is placed at the top, the graph’s title has been
traditionally placed below the graph, at least in publica-
tions.

Figure 1. Examples of common graphic presentations.
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Types of Graphs
The advances in computer technology have markedly facili-
tated the production of a large variety of graphic presenta-
tions, including complex ones. Several software packages are
commercially available and continuously updated. The most

common basic types are briefly discussed herein. Examples
of common graphs are presented in Figure 1.

The dot graph has the advantage of individual representa-
tion of each observation in a linear fashion and thus shows the
range, pattern of spread, and any outlying observations. The

Fig. 1—Continued
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mean may be added as a horizontal short line and the standard
deviation (SD) or standard error (SE) by vertical lines. Al-
ternative to the mean, the median and the lower quartile (25th
percentile) and upper quartile (75th percentile) can be dis-
played. A dot plot is suitable for a small number of observa-

tions and can be used for presentation of multiple groups. Too
many observations may produce a clutter and overlapping of
too many dots.

The scatter diagram is a dot graph where each dot repre-
sents 2 measurements for each individual observation (eg,

Fig. 1—Continued
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height and weight). Hence, it gives a picture of correlation. A
regression line or idealized curve can be superimposed on a
scatter diagram.

The line graph is good for revealing a relationship or trend
(ie, the change of numeric variable on the vertical axis in
relation to an ordinal or a quantitative variable on the hori-
zontal axis). It can be a single line or multiple, each repre-
senting a separate set of data. The line graph can allow
presentation of the trend of 2 variables that have different
units. In this case, the first variable is assigned the left vertical
axis and the second variable is assigned the right vertical axis.

The bar graph is commonly used for qualitative or discrete
quantitative variables. The height of the bar represents the
value and in case of a mean may be combined with a vertical
line representing the SD or SE. All tables and graphs should
specify whether SD or SE are shown. It is a common mistake
not to make this clear. The bars must be of the same width,
and the distance in between can be half or equal to the bar’s
width. In a complex bar graph where multiple measurements
are being represented, the bars of each set can be next to each
other without spacing. In certain situations, the bar can be
divided into parts representing the share of the bar’s compo-
nents, whether as absolute numbers or percentages. If the bar
labels are lengthy, the axes may be switched.

The histogram is actually a set of bars next to each other
without spacing to represent a continuous quantitative vari-

able. The horizontal axis represents the numerical variable
and the vertical axis represents the frequency (absolute or
relative). It differs from the bar graph in that the width of the
bars may vary and each should reflect the width of the
respective category and that the vertical axis represents
counts of values not values themselves. Hence, the area, not
the height, of the bar represents the frequency in that cate-
gory. Histograms are useful to identify extreme values and to
identify the underlying distribution of the measures (eg, nor-
mal, log normal), which are important to the choice of sta-
tistical analytical technique.

The frequency polygon is practically a line graph connect-
ing the midpoints of the tops of the bars of a histogram.
Hence, it can be used for multiple sets of data without
plotting the histograms. It can also demonstrate the shape of
distribution (eg, normality, skewness, or kurtosis) as ad-
dressed in detail in the preceding article on descriptive sta-
tistics.

The box graph (or box plot) is useful in presenting a
measure of central tendency together with a certain spread of
dispersion, for example, the mean with spreads of �1 SD
and/or �2 SDs or the median (50th percentile) with spreads
of certain percentiles (eg, 25th and 75th and/or 10th and
90th). The 25th and 75th percentiles are also called first
(lower) and third (upper) quartiles, respectively, and the
length of the box is called the interquartile range. Most
commonly, medians and interquartile ranges are used for box
plots. The figure annotation should specify what the symbols
mean. It has the advantage of excluding any outlying or
extreme observations (eg, below the first quartile or above the
fourth quartile). Box plots also indicate presence or lack of
symmetry in the distribution.

An ogive is a line graph representing cumulative frequen-
cies, either ascending (begins with the lowest category) or
descending (begins with the total of all categories).

Caterpillar plots are being increasingly used with the surge
of meta-analysis studies. The data are gathered from previ-
ously published trials selected according to certain criteria to

Figure 2. Example demonstrating the misleading visual effect of using an inappropriate scale.

Fig. 1—Continued
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maximize the homogeneity and soundness of the methods. It
is a systematic review by experts who survey the litera-
ture to identify and characterize the quality of data to be
included then calculate odds ratios (or relative risks) with
a 95% confidence interval (CI). In addition, an overall
odds ratio (displayed at the bottom of the graph) is esti-
mated, taking into consideration a “weight” assigned to each
study.

In the caterpillar chart, the conclusion about the findings of
each trial is determined by the location of its respective odds
ratio together with its whole 95% CI in relation to a line
representing an odds ratio of 1.0, with a decreasing scale to
the left and an increasing scale to the right. Overriding
indicates nonsignificance.

Survivorship or actuarial graphs represent changes or
probability of occurrence of an event over time relative to the
starting point. A well-known example is the Kaplan-Meier
graph, which is frequently used to demonstrate the natural
course of a disease outcome or to compare different inter-
ventional methods on the long-term outcome.

A pie graph shows the relative distribution of a total circle
into sections (slices of a pie). The magnitude of each com-
ponent is commonly displayed numerically as a percentage
(plus absolute numbers) inside or next to each slice of the
circle. Multiple pie charts can be used to compare different
sets of data.

Pictograms represent the variable as a picture the size of
which reflects its approximate magnitude in contrast to the
size of another similar picture. Another method can be rep-
resentation by a number of pictures of a constant size. Each
figurine represents a fixed amount, and a part of a figurine
represents a fraction of that amount. Pictograms markedly
lack precision and are usually used for commercial advertise-
ments.

A flow diagram is used to demonstrate the stages of a
study’s method or outcome, either in a vertical or a horizontal
direction and often combined.

Graph Composition
The type of data being presented and the main objective of
the presentation would determine the most appropriate choice
of the following:

• Type of graph.
• The measurement scale regarding spacing.
• The presence of a scale break. If a scale break is used, the

2 points on both sides of the break should not be con-
nected.

• The starting point of the scale (ie, zero or another value).
• The choice of an arithmetic or logarithmic scale. Many

biological variables follow logarithmic or exponential dis-
tributions and may best be represented on a logarithmic
scale.

• Clear labeling of the scales, including identification and
units (eg, number, percentage, kg, mg/dL).

• A legend may be needed to supplement the labeling and is
best placed in the right upper quarter of the graph.

• A reference line can be included horizontally across the
entire graph. A reference range can be included as 2 lines
or as a lightly shaded area that does not hide the data.

• The choice of scale is an important issue. Small differ-
ences can be made to appear large by expanding the scale
of the vertical axis to encompass a small range of values.
Conversely, important differences can be masked by com-
pressing the scale to cover too large a range (Figure 2).
Where practical, it is good to have a scale starting with the
value 0 or at least the typical range of numbers that could
be observed. It is also important with a series of graphs to
make the scales cover a similar range so that the graphs are
visually comparable.
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Sampling and statistical inference
Jerry W. McLarty, PhD,* and Sami L. Bahna, MD, DrPH†

INTRODUCTION
One of the major uses of statistics is drawing inferences about
a population from a sample of observations obtained from the
population. For example, in a clinical drug trial testing a new
drug, a group of patients with a disease are randomly as-
signed to a new drug or an established drug. The general
objective of the trial is to know how the drug will work on
most or all patients with that disease, not just the particular
group of patients chosen for the study. In this case, the
enrolled patients comprise the sample from a much larger
group, which is the population of patients from which we are
sampling. If the sample is properly selected and the experi-
ment conducted in an appropriate manner, then inferences
from the sample can be applied to the population at large
using a body of appropriate statistical methods. The general
framework for statistical methods of inference involves hy-
pothesis testing, that is, making a hypothesis about the ex-
perimental situation (eg, the new drug is better than the old
drug) and rigorously testing the likelihood of this hypothesis
using probability analysis.

SAMPLING
There are multiple methods of sampling, with each having its
indications, advantages, and limitations. The primary goal is
to ensure enrolling a sample that is representative of its
population and free from known bias. Random sampling is a
necessary assumption to make the statistical theory underly-
ing hypothesis testing possible: if a random sample is as-
sumed, we can generate statements about the data and esti-
mate how likely our statements are to be true. Sampling by
other than random means can more easily introduce bias in
patient selection. Such selection bias could interfere with the
validity of the study and limit generalization from a sample to
the population. Examples of selection bias include group
imbalances in sex, age, racial composition, or severity of
disease. Without randomization, subtle, often unintentional,
biases can occur, for example, assigning patients with the best
likelihood of success to the new drug group or approaching
patients most likely to be recruited for a study or most likely
to comply with the protocol.

There are different methods of random sampling depend-
ing on the particular study design. Common to all random
sampling methods is that chance is involved in subject selec-
tion. There are 5 common random sampling techniques: (1)
simple random sampling, (2) systematic sampling, (3) strat-
ified sampling, (4) cluster sampling, and (5) multistage sam-
pling.

With simple random sampling, every possible subset or
sample of subjects is equally likely to be selected. This is
difficult, if not impossible, to achieve in a clinical setting
because the whole population of patients with a particular
disease is unknown and certainly not available for selection at
the same time. For even a small population of patients, the
number of possible sets can be virtually uncountable. How-
ever, what is typically done is to randomly select patients for
the study from a list or take a convenience sample (eg, those
who have clinic appointments during the study period) and
randomly assign members of this convenience sample to the
treatment arms of the study. Rather than using equally prob-
able sets of patients, random assignment based on individual
patients ensures that each patient has a known probability of
being chosen. This is called probability sampling. Note that it
is not necessary that each patient has the same probability of
being in the sample just that the probability in known. For
example, there may be scientific reasons to include more
minorities in a study, in which case the probability of being
sampled could be higher for minorities than for nonminori-
ties.

Systematic sampling consists of sampling a proportion of a
population in a systematic way, for example, randomly
choosing an interval, such as every 10th patient, and ran-
domly choosing the first patient to start with. This is an
efficient means of sampling from a large population but has
the danger that patient order could be manipulated by some-
one who knows the sampling interval. Also, it may require
that the size of the population be known to chose the appro-
priate sampling interval.

Cluster sampling is based on similar groups or clusters of
individuals, with clusters chosen randomly and individuals
within the cluster used for study. An example is a nationwide
study of smoking prevention and smoking cessation programs
in which 11 similar pairs of communities were chosen for
intervention and the intervention methods randomly assigned
within pairs. Within a cluster, all the subjects may be used for
study. In the paired communities study, population statistics
on the health and smoking habits of each community were
used as outcome variables.

One problem with random sampling is that sometimes
certain groups of patients are underrepresented or an imbal-
ance can occur between treatment arms of a study. For
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example, a drug may have different effects on different sexes
and races. With simple randomization, especially with small
samples, there may be an imbalance of females assigned to
the treatment arm or no African Americans assigned to the
placebo arm. Stratified randomization is a common method
to avoid unbalanced treatment assignment. Patients are strat-
ified by factors that may have a confounding effect on the
study results, in advance of randomizing. Then randomization
is performed independently within each stratum. Stratified
randomization has the additional advantage that at any time
during the study there is a balance among strata and treatment
assignment. This may be important for studies that take a
long time to complete or studies that may potentially be
terminated early. Note that stratified randomization is differ-
ent from cluster sampling. For cluster sampling, the clusters
are chosen randomly and all individuals within a cluster are
studied, and often all receive the same intervention. For
stratified randomization, all patients within a stratum are
randomly assigned to a treatment arm.

Multistage sampling is similar to cluster sampling, except
that not all subjects within a cluster are sampled. The cluster
may be divided into smaller groups and random sampling
used to chose the subgroups. This could be done with mul-
tiple levels. For example, clusters could be states; within a
state cities could be randomly chosen, and within cities
people from various neighborhoods could be randomly cho-
sen. The disadvantage of both cluster and multistage sam-
pling is that they typically have larger sampling errors (the
sample may differ from the population) than other tech-
niques.

All of the sampling techniques described herein depend on
some kind of randomization technique. There are multiple
methods of obtaining random numbers, such as from pub-
lished lists or tables, pseudorandom number generator soft-
ware, and even physical devices. With small samples there is
a danger from using simplistic methods, such as flipping a
coin, that can result in an imbalance (eg, more persons
assigned to one group than the other or assigning more of the
early recruited persons to one group). In summary, the point
of random sampling or randomized assignment to treatment
arms is to eliminate selection bias, to ensure balance in
treatment arms, and to ensure that statistical methods of
estimating significance are valid.

One way to reduce the risk of imbalances with small
sample sizes, particularly within cluster or stratified sampling
frameworks, is to incorporate blocked randomization. A
block size is chosen, and within this block there is an equal
distribution of assignment groups that are randomly assigned.
In effect, this approach introduces a new layer of cluster
sampling within the existing sampling framework. For exam-
ple, with 2 treatments and a block size of 4, there can be an
imbalance of at most 2 patients. The disadvantage of this
approach is that if the treatment is not blinded, then it may be
possible to predict what treatment is next when the block is
almost fully allocated.

HYPOTHESIS TESTING
The scientific phases of a study involve making a hypothesis
(eg, drug A is better than drug B), performing the experiment,
and based on the results, then accepting, refuting, or modi-
fying the original hypothesis. Statistical hypothesis testing is
similar, with predetermined, quantified methods of testing
and decision making. Perhaps unique to statistics is the use of
a null hypothesis as the starting point for the inference pro-
cess. Instead of saying drug A is better than drug B, the null
hypothesis would state that “the effect of drug A is equal to
the effect of drug B” or “there is no difference between the 2
drugs.” The reason for this intuitively backward way of
stating the study hypothesis is that probabilities can be cal-
culated for testing statistical significance on the condition that
the null hypothesis is true. The symbol for the null hypothesis
is H0. An example null hypothesis might be as follows:

H0: �A � �B or equivalently H0: �A - �B � 0,
where the mean of some outcome variable is �A for pop-

ulation A and �B for population B, respectively. Note that the
hypothesis is stated on the population, and population param-
eters are by convention denoted with Greek symbols; for
example, means and standard deviations are denoted by �
and �, respectively.

We assume that the null hypothesis is true until data from
our study indicate otherwise. On the basis of our experiment,
we can reject the null hypothesis or not. If we reject the null
hypothesis, we can calculate the probability of being wrong.

The basic algorithm for statistical hypothesis testing is as
follows: (1) state a null hypothesis, (2) collect data from a
random sample or randomized experiment, (3) compute a test
statistic (a number that we can use to see if the null hypoth-
esis is true or not), (4) compute a P value (a probability
statement) for the test statistic, and (5) based on the P value,
reject or fail to reject the null hypothesis.

The value of P used to reject a null hypothesis is set in
advance of the experiment; typically P � .05 is traditionally
considered statistically significant. The P value is the prob-
ability of rejecting the null hypothesis, by chance, when in
fact it is really true (ie, the probability of a false-positive
conclusion).

To illustrate the process, assume that we want to test a new
drug for hypertension. In our experiment (but only after
getting institutional review board approval!), we randomly
assign 50 patients with hypertension to get the new experi-
mental drug, say drug A, and another 50 patients (with
comparable hypertension) to the standard of care, say drug B.
For outcome measurement, we want to measure change in
diastolic blood pressure after 2 weeks using the study drugs.
The null hypothesis is H0: the mean change in diastolic blood
pressure is the same for both drugs.

For a test statistic we use the familiar t test, which is used
to compare 2 mean values:

t �
X� A � X� B

�SE�X� A�
2 � SE�X� B�

2
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where X� A and X� B are the mean changes in blood pressure for
group A and B, respectively; SE(X� A) and SE(X� B), are their
respective standard errors. Assume in our example we found
the mean values were 20 mm Hg and 10 mm Hg for groups
A and B and their standard errors were both 10 mm Hg. Then
for our example,

t �
40 � 10

�200
� 2.12.

Using probability tables or a computer program, we can
determine if the null hypothesis were true. At degrees of
freedom of 98 (n1 � n2 � 2), the probability of getting a test
statistic value of 2.12 or higher by chance is .02. This num-
ber, .02, is the P value.

Since .02 is less than .05 (the commonly used value for
significance), we reject the null hypothesis and say the drugs
are significantly different with a P value of .02. At this point,
we have completed all 5 steps of the hypothesis testing
algorithm.

It is possible that we are wrong and that the drugs are not
really different; perhaps by bad luck we choose an atypical
sample of patients. However, the statistical theory assures us
that the probability of this happening is small, .02 (or 2 times
of a hundred similar samples of patients).

Because the 2 groups of patients usually do not have
exactly similar distributions of blood pressures, perhaps a
better way of data analysis of this trial might be to compare
the mean change in effect of the 2 drugs. For each drug,
compute the mean difference in the diastolic blood pressure
in each individual patient (ie, after � before). The compari-
son would be between X� �A and X� �B.

How small a probability of error do we accept? Why is P �
.05 used and not some other criterion such as �.01 or �.10?
That is the next topic of discussion.

TYPE I AND II ERRORS
The traditional criterion of P � .05 to determine statistical
significance is determined in advance of the experiment. It
would not be fair to do an experiment and then change our
criteria for significance later. Because absolute certainty is
never attainable in a hypothesis testing situation, investiga-
tors must have a preset amount of uncertainty they are willing
to accept. This critical value we use for significance (by
convention, designated by the Greek letter �) is the prede-
termined probability of falsely rejecting the null hypothesis
that we are comfortable with; � � .05 is a convention, not a
law. By tradition we are comfortable in taking a small risk
(5%) of being in error, but there are some circumstances that
would be too much risk; in other circumstances we might be
willing to take an even greater risk.

Setting the critical value � is a judgment call, balancing the
risk of false-positive decisions (for example, rejecting the
null hypothesis when in fact there is no difference between
drugs) and false-negative decisions (failing to reject the null
hypothesis when in fact the drugs are different). These are

called type I and type II errors, respectively. The probability
of a type I error is �; the probability of a type II error is �.
Predetermining critical values is analogous to setting the
sensitivity on a smoke detector: if the sensitivity (�) is set too
high, false alarms (type I errors) are likely, too low and a real
fire may be missed (false negative).

STATISTICAL POWER
An important consideration of designing an experiment (be-
fore hypothesis testing is done) is the probability of correctly
rejecting the null hypothesis, for example, declaring a new
treatment is better than the standard treatment. This proba-
bility is called statistical power. If � is the probability of
failing to reject a true null hypothesis, then power is 1 � �.
Power is usually expressed as a percentage rather than a
probability: 100% power is desirable but, of course, not
attainable; 50% power is the equivalent of flipping a coin to
make a decision. Common values for study design purposes
include 80%, 90%, or 95%.

The estimation of power can be a complex statistical pro-
cedure. In general, power can be increased by the following:
• Increasing sample size; more information leads to more

power.
• Increasing �; a larger type I error increases the chance of

rejecting the null hypothesis.
• Increasing precision of the outcome measure; less noise

yields more power.
• Increasing the effect size; large effects are easier to find.

SAMPLE SIZE DETERMINATION
Sample size is usually the variable that can most easily be
manipulated to increase the power of a study. The following
simplified formula illustrates the dependence of sample size
on the magnitude of the effect and the SD of the outcome
measure for a 2-group comparison:

N � 16 � S2/D2,
where S is the standard deviation of the outcome variable,

D is the difference of clinical interest in the 2 outcomes, and
N is the sample size of each group. It can be seen that small
differences in D would require a large sample size and that
the sample size is directly proportional to the square of the
standard deviation, S2 (sample variance).

This formula is greatly simplified to be just a rough esti-
mate of sample size but is a handy rule of thumb for many
simple studies. The number 16 includes functions of the type
I and II error probabilities and the normal distribution. For
this formula, � � .05 and power is 80%.

For example, the standard deviation of diastolic blood
pressure is approximately 10 mm Hg. To see if a new drug is
better than placebo (say, 5 mm Hg difference in diastolic
blood pressure) it would take the following:

N � 16 � S2/D2 � 16 � 102/52 � 16 � 100/25 � 64.
Sixty-four patients in each group should yield sufficient

statistical power to detect a difference this small. However, if
we decided that 10 mm Hg or greater would be of more
clinical significance, then only 16 patients would be needed
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in each group. In other words, smaller differences require
larger sample sizes, and larger differences can be detected
with smaller sample sizes. Another caveat is that sometimes
what is statistically significant may not be clinically impres-
sive. This is especially a problem with very large sample

sizes, where very small numerical differences may be de-
clared statistically significant but not be of clinical interest.
For example, a drug that reduced diastolic blood pressure by
1 or 2 mm Hg might be found statistically significant with a
large sample size but not be clinically relevant. Studies
should be planned with the smallest practical sample size
estimated to achieve clinical significance.

Figure 1 illustrates how power varies with sample size for
3 different levels of �. It can be seen that changing � from .1
to .01 almost doubles the required sample size for power of
80%.

REFERENCES
Included in a comprehensive list at the end of the Supplement.

Requests for reprints should be addressed to:
Jerry W. McLarty, PhD
Department of Medicine
Feist-Weiller Cancer Center
LSU Health Sciences Center
1501 Kings Highway
Shreveport, LA 71103-4228
E-mail: JMCLAR@LSUHSC.EDU

Figure 1. The effect of type I error (�) on the required sample size.

S24 ANNALS OF ALLERGY, ASTHMA & IMMUNOLOGY



Statistical tests for 1 or 2 samples
Jerry W. McLarty, PhD,* and Sami L. Bahna, MD, DrPH†

INTRODUCTION
The use of statistics can be categorized as either descriptive
or inferential. With inferential statistics generalizations are
made about populations from samples. For example, how
representative are the values calculated from a sample, how
likely is the result a chance finding, and how do different
groups compare? As described in the previous article by
McLarty and Bahna, the basics of hypothesis testing are as
follows: make a hypothesis, draw a sample, calculate a test
statistic, and, based on how probable the test statistic is,
decide whether to reject the hypothesis. The tests described
herein are among the most commonly used tests for hypoth-
esis testing. Each procedure is described for a single-group
test and for 2-group tests. They are divided into parametric
and nonparametric tests of hypotheses.

Parametric tests are tests based on known statistical dis-
tributions (eg, normal distribution, Student distribution). The
name is derived from the fact that these distributions have
parameters in the equations that describe them (such as the
mean and standard deviation (SD) for the normal distribu-
tion). Ideally, parametric tests should only be used on data
that are known to be based on a distribution or closely follow
the chosen distribution. In contrast, nonparametric tests do
not make any assumptions about the underlying distribution
and thus are also known as distribution-free tests. This topic
is explored further later in the article.

TESTING OF MEANS (STUDENT t TEST)
Perhaps the most well known of statistical tests are the t test
and the �2 test. The t test is used to compare 2 means from
independent normal distributions and the �2 test to compare
grouped data with no explicit distributional assumptions.
However, the t test can also be used for a single-group
comparison, comparing a mean value from a normal distri-
bution to a single-group value. Other single-group tests in-
clude testing proportions or percentages from binomial dis-
tributions (for example, yes/no data) or from Poisson
distributions (counts of events).

ONE-SAMPLE t TEST
The Student t test is used to compare 2 means, that is, means
in 2 different groups (say, treated or untreated), or to compare

a single mean against a known constant (eg, normal temper-
ature, average IQ). The idea behind a t test is that, under
certain conditions, the mean of a sample divided by its
standard error (SE) follows a known distribution, the t dis-
tribution, from which probabilities can be calculated and
statistical hypotheses can be tested.

For example, assume a study was performed to test
whether the average normal body temperature was really
98.6°F, as generally believed. In this study, assume temper-
atures were measured in a group (ie, one sample) of 100
healthy persons throughout the day: the mean temperature
was found to be 98.1°F and the SE (SE � SD/�n) was 0.05.
A 1-sample t test could help answer the question of whether
this finding was statistically different from 98.6°F:

The null hypothesis is that there is no difference, that is,
mean of the sample is 98.6 or H0: �X � 98.6 � 0 (the mean of
the test sample is denoted by �X).

The formula for the test statistic in this case is

t �
�X � C

SE� �X � C�
�

�X � C

SE�X� �
,

where C is a constant (the SE of a mean minus a constant is
the SE of the mean because a constant has no variability). For
the example given,

t �
�X � 98.6

SE� �X � 98.6�
�

98.1 � 98.6

0.05
� �10.0

The t distribution is symmetric so positive and negative test
statistics have the same probability; the sign of the statistic
can be ignored in computing P values.

The P value (the probability of a t statistic of this magni-
tude or greater if the means actually were the same) is quite
small, P � .001. So the conclusion is that, for this sample at
least, the average temperature is significantly lower than 98.6°F.

The shape of the t distribution, and the calculation of P
values, depends on an often misunderstood number called the
degrees of freedom (df). In the 1-sample t test, if n subjects
are in a sample, the degree of freedom is n � 1 (because 1 df
was used up in the calculation of the mean value).

TWO-SAMPLE t TEST
The same principles apply for a 2-sample t test, and all its
variants, as for the 1-sample test: a t statistic is the ratio of a
mean value divided by its SE. The complication comes in
estimation of the SE. The specific formula depends on
whether the 2 groups being compared have the same variance
and whether the sample sizes are the same in both groups. In a
2-sample test the numerator of the ratio is the absolute dif-
ference between 2 means, �X1 � �X2 (ie, whether it is negative
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or positive). The denominator is the SE of the difference, that
is, SE( �X1 � �X2) � �SE( �X1)2 � SE( �X2)2. So, the test statistic
in this case is given by the following:

t �
�X1 � �X2

�SE� �X1�
2 � SE� �X2�

2

It can be easily seen that if 1 of the samples is replaced by a
single number, then this formula is equivalent to a 1-sample
t test.

Note that the degrees of freedom for a 2-sample t test is
n1 � n2 � 2 (2 df are used in calculating the 2 means), where
n1 and n2 are the sample sizes for each of the 2 groups.

A hypothetical example is in testing a potential therapy for
asthma control, in which a group of 50 patients were given
the therapy and compared with a group of 40 patients with
similar mean forced expiratory volume in 1 second (FEV1)
given a placebo. The mean percent predicted FEV1 was found
to be 80% (SE, 2.0%) in the treated group and 76% (SE,
2.5%) in the untreated group. A Student t test to see if the
treatment made a difference yields the following:

t �
�X1 � �X2

�SE� �X1�
2 � SE� �X2�

2
�

80 � 76

�22 � 2.52
� 1.25

The degrees of freedom is 50 � 40 � 2 � 88; from standard
statistical tables or statistical software, it can be seen that the
corresponding P value was .11. Because P � .05, the null
hypothesis of no difference in means cannot be rejected. We
conclude that the treatment was not significantly effective.

Note that the t tests described herein work well if the
variances of the 2 compared means are roughly equal. If they
are not, then the underlying distribution is no longer a t
distribution. Various correction methods have been devised
to get around this; one of the most commonly used methods
is the Welch t test, which uses a more complex calculation
of degrees of freedom and allows an approximation to a t
distribution. The question remains, “How much difference in
variances is allowed?” One solution is to always assume
unequal variances. If the variances are equal, the t calcula-
tions and P value calculations simplify to the ones discussed
herein. The unequal variance calculations are cumbersome
but with software readily available and even free online sites
that will do the t test calculations, it is easy to use the unequal
variances versions.

PAIRED t TEST
All statistical procedures have underlying assumptions. For
the t test, the major assumptions are that the samples are
taken from a normally distributed population and the groups
being compared are independent. However, in many medical
studies, groups are not independent. The most common ex-
ample is before-after studies, where something is measured in
the same individuals before and after an intervention of some
kind. In this case, the before and after data are not indepen-
dent because the same individuals are included in both sets of

measures. Other examples include matched studies in which
individuals in each group are deliberately matched closely
with individuals in the other group. Twin studies are another
example of nonindependent groups in which the outcome
measure is available on each twin.

Fortunately, there is an easy way around this problem. If
the difference in outcome measures is computed for each pair
of persons, then a 1-sample t test can be performed on the
differences:

t �
�XD � C

SE� �XD�
�

�XD � 0

SE� �XD�
�

�XD

SE� �XD�

where �XD is the mean of the differences.
The null hypothesis in the paired test is that the mean of the

paired differences is 0. The degrees of freedom for a paired t
test is the number of pairs � 1.

In the following hypothetical example, a cholesterol-
lowering drug is given to patients. The cholesterol level is
measured before treatment and after 6 months of treatment. A
paired t test is used to see if the treatment was effective.

Patient
No.

Before
treatment

After
treatment

Before-after
difference

1 290 210 80
2 300 310 �10
3 250 210 40
4 220 215 5
5 195 185 10
6 230 235 �5
7 245 150 95
8 265 265 0
9 275 250 25
10 260 270 �10
Total – – 230
Mean value – – 23
SE – – 11.9

The null hypothesis is that the mean of the before-after
differences is zero. In this example, it is 23.

t � �XD/SED � 23/11.9 � 1.93. The degrees of freedom are
9 (P � .085). We cannot reject the null hypothesis, so we
conclude the treatment was not significantly effective.

In this example it would be an error to compare mean
cholesterol levels before treatment with mean cholesterol
levels after treatment with a 2-sample t test: the measure-
ments did not come from 2 independent groups but the same
group measured twice. As discussed, there is an underlying
assumption of normality in t test data. Although this is the
heart of the theoretical basis for t tests, t tests are relatively
insensitive to this assumption, especially if the sample sizes
are large (say n � 30).

TESTS OF PROPORTION: CATEGORICAL DATA

Simple Proportions
Sometimes it is desirable with a single sample of patients to
determine what proportion of them have a certain condition
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(eg, atopy) and to determine whether this proportion is un-
usually higher or lower than expected. There are several ways
to go about this statistically, including binomial, multinomial,
and Poisson tests. One such test presented herein is the �2

test. For binary data (eg, yes/no data) there are better meth-
ods, but the single-group �2 method leads didactically into the
next section of comparing 2 groups with categorical data.

As a simple example, a coin is flipped 20 times and 15
times it comes up heads, that is, 75% of the time. Is this a fair
coin? We would expect approximately 10 heads and 10 tails,
that is, heads 50% of the time. The �2 test compares observed
values (15 heads, 5 tails) with expected values (10 each). A
test statistic can be derived from the observed and expected
values and a P value calculated.

The test statistic is as follows:

�2 � � �observed value � expected value�2

expected value
� � �O � E�2

E

In words, the sum of the squared differences between ob-
served and expected values divided by the expected value.

For example, �2 � (15 � 10)2/10 � (5 � 10)2/10 � 5.0
and P � .025. We can safely conclude that this coin is biased:
if the coin were fair we would rarely (1 time of 40) expect to
have a value of �2 � 5. Calculation of P (or looking it up in
a table) depends on the degrees of freedom: if there are 2
categories in our sample (heads/tails), the degrees of freedom
would be 2 � 1 � 1. If there are 3 categories, the degrees of
freedom would be 3 � 1 � 2.

Note that in this case it is obvious what the expected values
should be, half heads and half tails. The expected values will
vary with the situation. For example, if it is known that 30%
of the population is clinically obese, a local sample of indi-
viduals could be compared against this percentage: expected
values of 30% obese and 70% nonobese. Most often, perhaps,
expected values are assumed to be equally distributed among
the categories.

The �2 test can be used even when multiple categories are
possible. Gene frequencies, for example, are often expressed
as percentage normal (wild type), percentage heterozygous
for a particular mutation, and percentage homozygous alleles.
A simpler example is rolling a single dice, where a fair die
would have an equal chance (1 of 6) for each of the 6 possible
numbers to come up. In this case, the degrees of freedom
would be 6 � 1 � 5.

More Than 1 Group
The advantage of the �2 test is its simplicity; the same schema
of comparing observed to expected values will work for 2 or
more groups and for multiple possible outcomes. In principle,
data that can be put into a table can be analyzed with a �2 test,
provided certain constraints (discussed herein) are met. An
example follows.

Assume we want to compare the gene frequencies of a
gene mutation possibly involved in an allergic disease for 2
different racial groups, Asians vs whites.

The numbers in parentheses are expected values. For tables
like this, the expected values for a given cell (say the AA
genotype in Asians) is column total (20) times row total (105)
divided by the overall total (265). This assumes that the
column values are distributed proportionately in each row,
that is, that there are no racial differences in allele frequen-
cies. In this example it is easy to see that most Asians (60 of
105) have the AG alleles, whereas most whites (110) have
GG. However, it is not always so obvious, and in any case it
is still desirable to see whether this pattern is statistically
significant. The calculations are as follows:

�2 �
�15 � 7.9�2

7.9
�

�60 � 41.6�2

41.6
�

�30 � 55.5�2

55.5

�
�5 � 12.1�2

12.1
�

�45 � 63.4�2

63.4
�

�110 � 84.5�2

84.5
� 43.3

For tabular data the degrees of freedom is number of rows
minus 1 multiplied by the number of columns minus 1, or in
this example (2 � 1) 	 (3 � 1) � 2. From tables or a
computer program it can be seen that the P value (probability
of type I error) is very small, �.0001. The samples from each
group were random, the racial data are independent, and none
of the expected values are less than 5; the �2 assumptions are
met. So, it is extremely improbable that the observed racial
difference in genotypes is due to chance alone.

Limitations of the �2 Test
Like all statistical tests, the �2 test has its assumptions and
limitations. The major assumption is independence of the
groups being compared. An important limitation is that the
formula involving observed and expected values is only an
approximation to the �2 distribution. The approximation
breaks down with sparse tables (tables with small numbers in
the cells). Two rules of thumb are that no expected value
should be less than 1.0 and no more than 20% of the cells
should have expected values less than 5.0. In general, the �2

approximation is good if neither of these 2 rules is violated.
What should be done if 1 or both of these rules are violated?
One solution is to collapse (combine) 2 or more rows and/or
columns so that each cell has more numbers of subjects.
Another possibility is to use a statistical method that does not
use an approximation to a distribution: Fisher’s exact test.
Fisher’s exact test is beyond the scope of this discussion but
is readily available in most statistical programs for small
tables. It does not have to follow the 2 rules mentioned
herein. Fisher’s exact tests become computationally intensive
for larger tables, and special methods have been developed to
compensate for this problem.

Subjects AA AG GG
Total No.

of Subjects

Asian 15 (7.9) 60 (41.6) 30 (55.5) 105
White 5 (12.1) 45 (63.4) 110 (84.5) 160
Total 20 105 140 265
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NONPARAMETRIC TESTS
With the exception of the �2 test, all of the tests of hypotheses
discussed herein require assumptions about the distribution of
the data samples, for example, the t distribution. Means and
standard errors are parameters that help specify the underly-
ing distribution. Therefore, t tests and others like it are called
parametric tests. Fortunately, many variables in nature follow
a normal distribution. However, there are situations in which
the underlying distribution is not normal or is not known or
is too complex for practical use. Or, perhaps, the data are not
numeric at all (eg, Likert scales), such as strongly disagree,
disagree, no opinion, agree strongly, or disagree. For these
situations a body of statistical tests called nonparametric tests
are used; these are tests that do not require knowledge of
distribution parameters. The simplest example of a nonpara-
metric test is the �2 test. The underlying assumption is that
groups being compared are independent (eg, not from the
same population or closely related subjects or matched). The
null hypothesis is that the rows and columns of the data table
are distributed proportionately.

One-Sample Nonparametric Tests
For most common statistical tests, such as t tests, that are
based on normally distributed data there is a nonparametric
equivalent. The 1-sample �2 test discussed herein is a non-
parametric test. It makes no assumptions about the underlying
distribution of the data. It can also easily be extended to 2 or
more groups. Another 1-sample nonparametric test is the
Kolmogorov-Smirnov z test, which is often used to test
whether data come from a normal distribution. This will not
be discussed herein. However, there is another important
class of nonparametric tests based not on raw data values but
ranks of data (sorted lists of data). Intuitively, it is reasonable
to think that if the groups had unequal raw data values (one
group higher than the other, for example) their average ranks
or sum of ranks would also be unequal. This is the basis for
many nonparametric tests. This will be illustrated with the
2-sample discussion herein.

Two-Sample Nonparametric Tests
Consider a hypothetical example of test scores in 2 groups,
boys vs girls. The raw data may look like the following table:

t scores

Boys Girls

70 60
90 50
85 95
55 80
65 75

A 2-sample t test might be used to compare the mean
scores between boys (73) and girls (72); however, from the
small sample given, we may have no assurance that the data
are normally distributed. A nonparametric test should be

considered. The data could be ranked (sorted) without regard
to sex yielding the following:

Replacing the raw data in the original with the ranks and
adding the ranks in each column yields the following:

Surprisingly, no matter how the original data are distrib-
uted, the sums of ranks do have predictable distributions for
which probabilities (P values) can be calculated. In the sim-
ple example given, the P value is .92, indicating that test
scores are not likely to be different between the sexes. The
null hypothesis of no difference could not be rejected.

This test is called the Mann-Whitney test or sometimes the
Wilcoxon rank sum test. When the raw data have ties be-
tween the groups, an average rank is assigned to both groups
for the tied data. Although the computations for ranks and
sums of rank are not particularly onerous, P values still have
to be determined from elaborate tables or computer programs.
Most statistical packages contain the Mann-Whitney test.
Note that it is not required to have the same number of
subjects in each group.

Paired Nonparametric Tests
Just as for the paired t test, there is a nonparametric paired test
for comparing groups that are not independent, for example,
twins, before and after measures on the same persons, and
closely matched groups. With the paired test, the difference
of each pair is computed. If the groups were equal then you
would expect that there would be a balance of negative and
positive values. If the differences are ranked, as in this case,
you would expect equal sums of positive and negative ranks.
The Wilcoxon signed rank test uses this idea of summing
positive and negative ranks to come up with a test statistic.
The example below should illustrate this method.

Rank Score Sex

1 50 Girl
2 55 Boy
3 60 Girl
4 65 Boy
5 70 Boy
6 75 Girl
7 80 Girl
8 85 Boy
9 90 Boy
10 95 Girl

Boys Girls

2 1
4 3
5 6
8 7
9 10

Sum � 28 Sum � 27
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In a study conducted by 1 of the coauthors (J.W.M.), 25
men with prostate cancer were given a drug to lower prostate
specific antigen (PSA). Results from the first 10 men are
given in the table below. PSA levels were measured on each
man before the administration of the drug and 6 weeks later.
Each man was essentially his own control. Differences were
calculated for each pair; the differences were ranked without
regard to sign, and then the original signs affixed to the ranks.
Finally, the positive ranks and negative ranks are summed
separately and a P value computed using the smaller of the 2
sums.

The sum of all the negative ranks in the last column is
W� � �5.

The sum of all the positive ranks in the last column is
W� � 50. From tables, using 5 as the test statistic (the
smallest of the 2 sums in absolute value) or from a computer
program it can be shown that P � .022. This is less than .05,
so we can reject the null hypothesis of no drug effect and
conclude that the drug does affect PSA levels. Note that the
Wilcoxon signed rank test assumes that the data are quanti-
tative; otherwise, differences between groups (eg, before
minus after values) would not be meaningful.

There is another common nonparametric test for paired
data, the sign test. It is similar to the Wilcoxon signed rank
test except that magnitude of the raw data or the ranks do not
matter, only the direction of the difference (ie, smaller, same,
bigger). The test compares the number of positive and neg-
ative signed ranks and ignores pairs that are the same. The
sign test is less powerful than the Wilcoxon signed rank test
but is useful when the magnitude of change (or difference) is
not as important as the direction of change or when the data
are ordered but not interval level.

Nonparametric vs Parametric Tests
Except for the paired tests, both parametric and nonparamet-
ric tests assume random sampling from independent popula-
tions. Nonparametric tests do not assume random sampling
from normal distributions as do the t tests. So what happens
when a nonparametric test is performed with samples from
normal distributions? The nonparametric tests are still valid
in this case and will usually give similar results as t tests.
However, the t tests can have more power (higher probability
of finding a true difference) than nonparametric tests when
the normality assumptions are met. However, if the data are
not normally distributed or if there is doubt about the nor-
mality assumption, one should use a nonparametric test. This
is especially so for small sample sizes, because it is often
impossible to know what the distribution looks like from
small samples.
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Patient
No.

PSA
before

PSA
after

Difference
(before �

after)

Rank
(disregarding

signs)

Signed
rank

1 10.2 9.4 0.8 3 3
2 19.1 10.5 8.6 10 10
3 9.5 5.6 3.9 7 7
4 9.9 11.3 �1.4 4 �4
5 10.2 10.3 �0.1 1 �1
6 9.3 5.2 4.1 8 8
7 7.1 5.3 1.8 5 5
8 20.6 15.8 4.8 9 9
9 15.5 13.4 2.1 6 6
10 10.2 9.4 0.7 2 2
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Statistical tests for more than 2 samples
Jerry W. McLarty, PhD,* and Runhua Shi, MD, PhD*

INTRODUCTION
In a previous article statistical methods for comparing 2
groups were discussed. However, what if there are more than
2 groups? For example, how do you test for differences in the
effectiveness of 3 treatments, say, drug A, drug B, and drug
C? The 2-group t test and its equivalent nonparametric tests
are tailored for comparing only 2 means or medians. A simple
alternative comes to mind: compare drug A to drug B, drug A
to drug C, and drug B to drug C. So, instead of 2 comparisons
there are now 3. If there were 4 groups to test, it would
require 6 two-group comparisons. For 5 groups, 10 compar-
isons would be required. Multiple t tests are not the preferred
method of addressing the multiple-group comparison prob-
lem. The statistical problem with multiple t tests in this
manner is discussed in more detail herein, and more powerful
methods are introduced. Also, extension of �2 and other
nonparametric tests to compare multiple groups simulta-
neously is described.

MULTIPLE COMPARISONS PROBLEM
The fundamental problem with using multiple t tests to com-
pare more than 2 groups simultaneously is that the type I error
rate (ie, probability of erroneously rejecting the null hypoth-
esis by chance) is increased with each comparison. This is
called the multiple comparisons problem. The problem can
occur in a number of statistical testing situations. To illustrate
how this happens, consider a study comparing the effective-
ness of 3 different drugs. The null hypothesis is that the 3
drugs have an equal effect: H0: �A � �B � �C, where the �’s
are the respective means for each drug. If the probability of
type I error � � .05 for a single t test (H0: �A � �B or H0:
�B � �C or H0: �A � �C), the actual type I error rate for all
3 t tests combined is approximately 0.14. This means that 14
times of a hundred we would expect to reject the null hy-
pothesis by chance, not 5 as for � � .05. The overall type I
error rate continues to increase with more tests: for 4 t tests it
would be approximately 0.19. It can be seen that the type I
error rate can become unacceptably large, and we would have
less faith in our conclusion to reject the null hypothesis and
claim that one of the drugs is best.

One simple method to get around the multiple comparisons
problem is to adjust the P value: if there are n tests, reject the
null hypothesis only if P/n � .05. In our 3-group example, a
P value of .05/3 � .017 or less would be called significant.

This is called the Bonferroni correction, and it is commonly
used. Gene array testing, for example, often performs tens of
thousands of tests looking for polymorphisms linked to spe-
cific diseases. The Bonferroni corrected P values can be quite
small in such testing (eg, 10�9 or lower).

The Bonferroni correction is simple to apply and is widely
used, but it has been criticized as being too conservative, that
is, more often than necessary it fails to reject the null hypoth-
esis. Numerous other methods of adjusting for multiple com-
parisons have been proposed.

COMPARISON OF MEANS: ANALYSIS OF
VARIANCE
The t test is a comparison of means test. As discussed in an
earlier article, the t test can be used to compare one mean
value (from a random sample) with a single number or to
compare the mean from one group with the mean of another
group or to compare 2 closely paired groups. The basic
premise is that the difference in 2 means divided by the SE of
the difference follows a well-known distribution, the t distri-
bution. The t statistic can be seen as a signal to noise ratio (ie,
the test statistic):

t �
X� 1 � X� 2

�SE�X� 1�
2 � SE�X� 2�

2
�

signal

noise

which consists of the signal, the difference of the 2 means,
and the noise, all that stuff in the denominator. This is a
useful way of thinking about statistical tests: as the signal gets
bigger (more difference between means), the test statistic gets
larger and the P value is more significant. Conversely, if the
noise in the system (ie, the variance or standard deviation
(SD) of the samples) is large, the value of the test statistic
decreases and the P value is less significant.

This same signal to noise analogy is the basis of a powerful
statistical test, the analysis of variance (ANOVA). ANOVA
in its simplest form is an extension of the t test to more than
2 groups. For ANOVA, the test statistic is called F and has its
own probability distribution. Like the t test statistic, F is the
ratio of 2 quantities:

F � mean square between groups/mean square within
groups.

The derivation of this formula is given herein but may be
skipped by readers more interested in an overview of
ANOVA than computational details.

DERIVATION OF THE F TEST FORMULA

Mean Square Between Groups (Signal)
For the t test the difference in the 2 group means is the
numerator of the formula; in ANOVA we have several group
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means to compare, so the trick is to calculate the difference
between each group mean and the overall mean (the mean of
all the values in all groups). If the overall mean is X� ALL, and
X� A, X� B, and X� C are 3 group means we wish to compare, then
SSBetween Groups � n[(X� A � X� ALL)2 � (X� B � X� ALL)2 � (X� C �
X� ALL)2], where n is the number of subjects in each group and
SS is the abbreviation for sum of squares. If we added just the
3 differences without first squaring them, they would cancel
out and sum to 0, which would give us no information about
the signal. To avoid this, the differences are squared, hence
the term sum of squares.

Only one new concept needs to be introduced, that is, mean
square. If we wanted to get an average squared difference
it would be intuitive to divide the SS described previously by
3 (3 group differences were obtained). However, as with SD,
to get an unbiased estimate using our sampled groups, we
divide the sum of squares by the degrees of freedom. One
degree of freedom was used in calculating the overall mean.
So, to get our average, we divide the sum of squares by the
number of groups minus 1, that is, k � 1; in this example,
df � 3 � 1 � 2. In general, the between-groups degrees of
freedom (dfBetween Groups) � k � 1, where k is the number of
groups. Finally, we calculate the average, called the mean
square (abbreviated as MS):

MSBetween Groups � SSBetween Groups/dfBetween Groups ,

this is the numerator (signal) portion of our F statistic.

Mean Square Within Groups (Noise)
The goal of ANOVA is to compare means between groups.
There is variability between groups and variability within
each group. It is this variability within groups that leads to the
denominator (noise) portion of our F statistics.

For our example with 3 groups, let’s assume that the
sample size is 10 individuals for each group or 30 people
total. If we compute the squared difference between every
data point and its group mean and then add them, we would
have a sum of squares within groups:

SSWithin Groups �

�X1A � X� A�
2 � �X2A � X� A�

2 � … � �X10A � X� A�
2 � �X1B � X� B�

2

� �X� 2B � X� B�
2 � … �X1C � X� C�2 � …�X� 2C � X� C�2

� � � �X� 10C � X� C�2

where X1A, for example, means the value of the first data
point in group A, and … denotes terms omitted for brevity.

For our example, there was a total sample size of 30. Three
degrees of freedom were used to calculate the 3 group means.
So the overall within-group degrees of freedom is as follows:
dfWithin Groups � N � k (where N is the total sample size for all
groups combined and k is the number of groups). For our
example, dfWithin Groups � 30 � 3 � 27. In a manner similar to
between groups, the within-groups mean square is as follows:

MSWithin Groups � SSWithin Groups/dfWithin Groups

Calculation of F
Now that both our numerator (signal) and denominator
(noise) have been defined, we can calculate the test statistic
as follows:

F � MSBetween Groups /MSWithin Groups

With the test statistic F, the P value can be calculated with
a computer or looked up in a table with numerator degrees of
freedom k � 1 and denominator degrees of freedom N � k.

Example (Hypothetical)
Assume that diastolic blood pressure is measured in 5 sub-
jects in each of 3 age groups: 30 to 39, 40 to 49, and 50 to 59
years. The question is, “Does diastolic blood pressure differ
in these age groups?” The null hypothesis is the group means
are equal. The data table looks like this:

The overall mean is 78.3 mm Hg.
The sum of squares between groups is as follows:
SSBetween Groups � 5[(71–78.3)2 � (78–78.3)3 � (86–78.3)2] �

563.3
MSBetween Groups � SSBetween Groups/dfBetween Groups � 563.3 /2 �

281.7
SSWithin Groups � (70–71)2 � (75–71)2 � … � (80–78)2 �

(70–78)2 � …(90–86)2 �… (80–86)2] � 520.0
MSWithin Groups � SSWithin Groups/dfWithin Groups � 520/12 � 43.3
Finally,
F � MSBetween Groups/MSWithin Groups � 281.7/43.3 � 6.5
The P value for F � 6.5 with 2 and 12 df � 0.012.
Because P is less than .05, we reject the hypothesis that the

group means of diastolic blood pressure are equal.

Which Groups Are Different?
In this example, the F test tells us that the groups means are
not all the same (ie, at least one of them is different from
another). Unfortunately, it does not tell us which one(s) is
(are) different. In the example, it is easy to see that the
youngest age group has a much lower mean diastolic blood
pressure than does the oldest, but it is not clear whether the
middle age group significantly differs from the other two. To
address this issue, there are several post hoc tests (tests to be
used after the null hypothesis has been rejected) that can help
sort this out. Post hoc tests are beyond the scope of this

Subject No.
Age

30–39 years
Age

40–49 years
Age

50–59 years

1 70 80 90
2 75 70 85
3 60 75 80
4 70 85 95
5 80 80 80
Group mean 71.0 78.0 86.0
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discussion, but most statistical software has several of them
included with the ANOVA procedure.

Comparison of ANOVA and the t Test
The underlying assumptions of the t test apply to ANOVA:
the groups are assumed to be independent random samples
from normal populations. In its simplest form, ANOVA is
just an extension of the t test to more than 2 groups. If
ANOVA is performed with just 2 groups, the P value will be
identical to the P value of a t test on the same data.

Extensions of Simple ANOVA
ANOVA is a powerful statistical tool with capabilities far
beyond expanding t test methods to more than 2 groups. It is
possible to have more than one factor (in the example given
age group is a factor) in ANOVA. For example, a similar
study might include sex and race and even include interaction
effects among them; it might be that drugs work differently
for older African American men than for white men and
women and African American women. In this case there
would be a significant age-race-sex interaction effect. Factors
in ANOVA are variables of interest that can be categorized
into a few values, such as age group, sex, race, and study
center. A single ANOVA test can test all of the factors at
once. The basic principals of comparing between and within
mean squares are the same as for the simple 1-factor
ANOVA.

Analysis of covariance (ANCOVA) extends this concept to
continuous variables (called covariates), such as age, height,
and cholesterol level. Again, ANCOVA tests all factors and
covariates and interactions in a single run. Generally, covari-
ates are tested first, and if significant, the factors are tested
after adjusting for the covariates. For example, if age is a
covariate and sex is a factor, the effect of sex may be
computed after adjusting for age, simulating the effect that all
subjects are the same age.

Another powerful extension of ANOVA is repeated-
measures ANOVA. In many studies, the same outcome is
measured multiple times on the same individuals. For exam-
ple, the effect of an allergy treatment might require measur-
ing forced expiratory volume in 1 second (FEV1) at weekly
intervals for 5 weeks. The investigators could just compare
the effect of the drug, compared with a placebo, by using the
FEV1 at week 5. However, this ignores information that may
be useful from the first 4 weeks of data. Repeated-measures
ANOVA is a means of using all the data from all of the time
points.

It is possible that the sample sizes are not always equal for
each group. However, the same methods described herein still
apply, but the computation of degrees of freedom within
groups is different. Most common software packages take
care of this automatically. In general, ANOVA calculations
are sufficiently tedious so it is not practical to do them by
hand when there are so many software packages readily
available. Statistical software will be discussed in a later

article. Readers interested in more advanced applications of
ANOVA should consult statistical textbooks.

COMPARING PROPORTIONS IN MORE THAN
2 GROUPS
Two-sample comparisons of proportions have been described
in a previous article. Expansion of the �2 test to more than 2
samples (groups) involves no new concepts. The principle of
comparing observed to expected values in each cell of a table
is identical regardless of the number of samples, and the rules
of thumb concerning the magnitude of expected values are
the same.

Recall that for each cell in a table the comparison of the
observed data to the expected data (based on the assumptions
that rows and columns are independent) follows this format:

(Observed � Expected)2/Expected

The differences are squared to eliminate the sign of the
difference. Otherwise the sum of differences used in the
following equation would always sum to zero (ie, pluses and
minuses would cancel each other out). The �2 test statistic is
the sum of all such squared terms in the table. In mathemat-
ical symbols this becomes the following:

�2 � �� �observed value � expected value�2

expected value

�

�
i

�
j

�Oi,j � Ei,j�
2

Ei,j

where i � 1,2,3, …, Nrows indexes rows and j � 1,2,3,…Ncols

indexes columns.
If appropriate conditions are met, then this sum approxi-

mates a �2 distribution and probabilities (P values) can be
calculated. The degrees of freedom for calculating P values
is (Nrows � 1) � (Ncols � 1). There is no restriction on how
large the number of rows and columns can be, except there
must be at least 2 cells in the table. As before, no expected
values can be less than 1.0, and 20% or more of the expected
values must be 5.0 or greater. If these rules are violated, the
approximation to the �2 distribution is suspect and the con-
clusions reached may be in error. This can often be fixed by
collapsing rows or columns (ie, combining 2 or more groups
into 1 group). If it is not possible to do this, there is a test
called the Fisher exact test that is not restricted by small or
even zero expected values. However, this can be computa-
tionally intensive, depending on the size of the table and the
number of subjects. To illustrate the �2 test, consider the fol-
lowing example, an extension of the example used in an earlier
section.

Assume we want to compare the gene frequencies of a
gene mutation possibly involved in an allergic disease for 3
different racial groups: Asian, non-Hispanic white, and His-
panic white. The data are as follows:
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The numbers in parentheses are expected values. For tables
like this, the expected values for a given cell (say the AA
genotype in Asians) is column total (28) times row total (105)
divided by the overall total (241). This assumes that the
column values are distributed proportionately in each row.

The �2 for this table is 18.8, with 4 df. All of the expected
values are greater than 1.0, and only one cell had an expected
value below 5.0. The �2 assumptions are valid for this table.
The P value is .001. We conclude that there are racial dif-
ferences in the distribution of genotypes, with Asians having
a predominance of the AG genotype.

NONPARAMETRIC COMPARISONS OF MORE
THAN 2 GROUPS
As we have seen, ANOVA assumes that the dependent (out-
come) variable is drawn from a normal distribution. When
this assumption is not met, nonparametric methods based on
ranks have been developed. The 2-sample case has been
described in a previous article. The 2-sample case is called
the Mann-Whitney test. An equivalent test for more than 2
groups is the Kruskal-Wallis test. The principal idea behind
the Kruskal-Wallis test is to rank all the data without regard
to group and then calculate an overall average rank and an
average rank within each group. Then the difference between
group mean ranks and the overall mean rank is calculated and
summed over all groups, much like the sum of squares for
ANOVA. The formula for the test statistic K is as follows:

K �
12

N�N � 1�
�
1

g

ni �r�i � r��2

where N is the total number of subjects, g is the number of
groups, ni is the number of subjects in group i, r�i is the mean
rank for group i, and r� is the overall mean rank.

For group sizes of 5 or more, K has an approximate �2

distribution with g � 1 df. To illustrate, let’s apply the
Kruskal-Wallis test to the following example. Assume we
want to compare the prostate specific antigen (PSA) levels in
3 groups of men ages 40 to 50, 50 to 60, and 70 to 80 years.
This is a hypothetical example, but PSA is a good illustration:
it is not normally distributed but is highly skewed.

The overall mean rank is 8.0. There are 3 groups and a total
of 15 subjects. So,

K �
12

15�16�
	5�3.2 � 8�2 � 5�8 � 8�2 � 5�12.8 � 8�2


K �11.52, df � 3 � 1 � 2, P � .003.
So we reject the null hypothesis of no age difference in

PSA.
The problem of which groups are different remains. Un-

fortunately, the methods are more limited than for ANOVA.
A simple alternative, after determining from the Kruskal-
Wallis test that the groups are not the same, is comparing
pairs of groups using the Mann-Whitney test and reducing the
type I error rate from 0.05 to 0.05 divided by the number of
comparisons (Bonferroni correction). In this example, we
would reject the pairwise null hypothesis with P � .05/3 or
.0167.
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Subjects AA AG GG
Total No.

of subjects

Asian 15 (12.2) 60 (47.1) 30 (45.7) 105
Non-Hispanic white 10 (13.8) 44 (53.3) 65 (51.8) 119
Hispanic white 3 (2.0) 4 (7.6) 10 (7.4) 17
Total 28 108 105 241

Raw Data

Subject
No.

Age
40–49 years

Age
50–59 years

Age
60–69 years

1 0 0.4 1.2
2 0.1 0.6 2.0
3 0.2 0.8 3.0
4 0.3 1.0 2.4
5 0.5 1.4 4.6

Ranked Data

Subject
No.

Age
40–49 years

Age
50–59 years

Age
60–69 years

1 1 5 10
2 2 7 12
3 3 8 14
4 4 9 13
5 6 11 15
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Correlation and regression analysis
Runhua Shi, MD, PhD,* and Steven A. Conrad, MD, PhD†

INTRODUCTION
The preceding 2 articles have focused on the comparison of 2
or more samples for the purpose of testing for a difference
among the samples with respect to 1 or more outcome vari-
ables. In contrast to outcome, it may be desirable to determine
the relationship between 2 or more variables. The methods
introduced in this article include correlation and regression.

Correlation analysis assesses the linear relationship be-
tween 2 variables, providing a measure of both the strength
and direction of the relationship. Correlation makes no as-
sumption on causality in the relationship. It assumes only a
linear relationship, and variables with a strong nonlinear
relationship may show poor or absent correlation. To help
identify the type of relationship between variables, visual
inspection of a scatterplot is invaluable. Correlation can be
performed on both parametric and nonparametric variables.
The most commonly used parametric method is the Pearson
product-moment correlation. Two nonparametric methods are
in common use, including the Spearman rank order correla-
tion and Kendall � methods. Partial correlation provides for
a measure of correlation after controlling for the effects of
variables other than the 2 primary variables. In certain situ-
ations, the correlation relationship can be linear to a certain
extent beyond which it may disappear or remain linear but at
a different degree.

Regression analysis assesses the relationship between 1
dependent (observed) variable and 1 or more independent
(explanatory) variables, with an implied causal relationship.
Regression goes beyond correlation by inferring relationships
between variables, allowing modeling of causal relationships,
and predicting the value of the dependent variable from a
given value of independent variables(s). Unlike correlation
analysis, which makes few assumptions, regression analysis
is based on a number of underlying assumptions. Regression
analysis includes both linear and nonlinear regression. Linear
regression involves a linear model, which is linear with
respect to its parameters. Linear regression models may be
simple (a single independent variable) or multiple (2 or more
independent variables). Nonlinear regression deals with ex-
ponential, power, or more complex relationships.

Logistic regression extends regression analysis to include
dependent variables, which may be dichotomous (binary) or
discrete (multinomial) instead of continuous, and indepen-

dent variables, which may be a combination of continuous,
discrete, and/or dichotomous. The underlying assumptions
are considerably relaxed from those of linear regression. As
in linear regression, logistic regression models may be simple
or multiple.

CORRELATION ANALYSIS
The correlation coefficient (r) is a measure of the strength of
the linear relationship between 2 variables. A positive corre-
lation indicates that as one variable increases the other in-
creases also. A negative correlation indicates that one vari-
able increases as the other decreases. A value of 1 indicates
a perfect correlation (ie, the first variable is an exact linear
function of the second with a positive relationship). A value
of �1 indicates an exact negative linear relationship. Values
between 0 and these extremes indicate increasing strength of
association in a positive and negative relationship, respec-
tively. It is generally accepted that the correlation is consid-
ered weak if r � 0.4, moderate if 0.4 � r � 0.8, and strong
if r � 0.8.

For illustration purposes, Table 1 shows a data set of
annual income, unemployment rate, and weekly food expen-
ditures according to years of education. In Figure 1, we can
see a positive correlation between education level and annual
income, a negative correlation between education level and
unemployment rate, and an absent correlation between edu-
cation level and weekly expenditures for food. The correla-
tion coefficients and significance tests for these examples are
discussed herein.

PEARSON PRODUCT-MOMENT CORRELATION
The Pearson product-moment correlation coefficient (Pearson
r) is a parametric measure of linear association between 2
variables. Its underlying assumptions include the variables
each being normally distributed and their joint distribution
being bivariate normal. The bivariate normal distribution is
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Table 1. Hypothetical Data on Education, Annual Salary,
Unemployment, and Weekly Food Expenses

Education
level, y

Annual salary
(in thousands), $

Unemployment
rate, %

Weekly food
expenditure, $

8–9 13.0 11 342
10–11 19.7 7.1 347
12–13 26.0 4.0 339
14–15 31.7 2.5 341
16–17 40.1 1.9 314
18–19 50.0 1.6 352
20–21 62.4 1.4 346
�22 71.0 1.3 348
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an extension of the normal distribution to 2 variables. The
bivariate probability density function is a 2-dimensional sur-
face with a center peak and gaussian-type decrease as the
distance from the center increases. In most practical applica-
tions, if the 2 variables satisfy the normal distribution as-
sumption, they usually satisfy the bivariate normal assump-
tion.

The Pearson product-moment correlation for a sample es-
timates the correlation for the population. The formula for the
sample Pearson product-moment correlation is as follows:

rxy �
�i ��xi � x���yi � y���

��i �xi � x��2��yi � y��2

where x� is the sample mean of variable x and y� is the sample
mean of variable y. When the data represent the population
instead of just a sample, the correlation coefficient is desig-
nated as �xy and is calculated from a similar formula:

�xy �
�i ��xi � �x��yi � �y��

��i �xi � �x�
2��yi � �y�

2

where �x and �y represent the population means for the x and
y variables. Typically, the population means are not known
and the sample correlation is what is calculated.

The coefficient of determination, calculated as r2, is a
derived statistic that provides an indication of the strength of
the relationship between the 2 variables. The value of r2

corresponds to the amount of variation in one of the variables
explained by the other. For example, a value of r of 0.8
indicates that 64% (0.82) of the variation in the first variable
is accounted for by knowing the second (or vice versa).

When interpreting the value of the correlation coefficient,
it should be recognized that the relative importance of the
value depends on the sample size. In small sample sizes, a
magnitude of 0.1 would generally not be considered substan-
tial, but in very large samples, this value might well represent

a significant correlation. This dependence is evident when
formally testing for significance. Like other statistical mea-
sures, a correlation coefficient can also be tested for statistical
significance. The value of the sample correlation coefficient
r is assumed to deviate around the population coefficient �
with a given distribution. This distribution is skewed if r is
tested against values toward �1 or 1. However, when testing
that r is different from zero (the most common scenario), this
distribution is symmetrical and can be estimated using the t
distribution, where

t �
r��n � 2�

��1 � r2�

with (n �2) df. As noted herein and evident in the equation,
the sample size (n) has a substantial impact on the value of
the t statistic independent of �r�.

As an example, consider the correlation between body
weights in spouses. We assume that weight is normally
distributed in both groups. Suppose 50 spouse pairs were
weighed, with a resulting correlation coefficient of 0.6. We
can test the null hypothesis H0: � � 0 vs the alternate
hypothesis H1: � � 0. This value of r and n give a t value of
5.20, which is statistically significant, P � .02, so we can
conclude there is a positive moderate correlation between the
weight of spouses in this sample.

If there is a need to test the hypothesis that � is equal to a
specific value other than zero, the t statistic described cannot
be used. In this case, the Fisher z transformation can be
helpful. This is a more general approach that can also be used
to test the hypothesis that � is equal to zero. The initial step
is to transform the correlation to eliminate the effect of
skewness:

zr �
1

2
ln�1 � r

1 � r�
This transformed variable to natural logarithm (ln) approxi-
mates a normal distribution, so that a z statistic can be
calculated to test the null hypothesis that zr � z0:

z �
zr � z0

SE

�
zr � z0

� 1

n � 3

The value of z can be evaluated with the cumulative normal
distribution function to obtain the level of significance, either
1-tailed or 2-tailed.

An alternative approach is to calculate a confidence inter-
val (CI) around the transformed z value:

CI � zr 	 zcritical 
 SE

which for the 95% CI would be

Figure 1. Correlation between annual salary, unemployment rate, and
weekly food expenditure according to the years of education (data in Table 1).
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CL � zr 	 1.96 
 � 1

n � 3

Using the sample data set in Table 1 and graphed in Figure 1,
the following Pearson coefficients, CI, and P value can be
calculated:

Pearson
coefficients

95% CI P value

Education level vs salary 0.992 0.947 to 0.998 �.0001
Education level vs

unemployment
�0.872 �0.973 to �0.384 .0027

Education level vs
food expenses

0.121 �0.643 to 0.757 .785

The first reveals a very strong positive correlation, the
second a strong negative correlation, and the third a weak
nonsignificant correlation.

SPEARMAN RANK-ORDER CORRELATION
The nonparametric measure of Spearman rank-order correla-
tion (Spearman �; in contrast to the parametric correlation r)
is based on the ranks of the data values rather than the raw
data values. Unlike the Pearson correlation, it does not re-
quire the underlying assumption of normality and should be
the correlation used in this circumstance. It is particularly
useful when the data represent ordinal or qualitative variable
or contain outliers.

The Spearman correlation is a special case of the Pearson
correlation in which the values x and y are replaced with their
rankings. This leads to a formula based on the Pearson
coefficient:

rs �
�i ��Rx � R� x��Ry � R� y��

��i �Rx � R� x�
2��Ry � R� y�

2

where Rx and Ry are the ranks of the x and y variables,
respectively. A more efficient formula is as follows:

rs � 1 �
6 �di

2

n�n2 � 1�

where di
2 is the square of the difference between the corre-

sponding ranks of xi and yi, and n is the number observations.
In the case of tied ranks, this formula cannot be used, and the
correlation must be calculated by an alternate method, such as
the Pearson correlation on the ranks, as introduced in the
previous equation.

The method to test whether the Spearman correlation is
significant is similar to method for Pearson correlation. In
Spearman rank-order correlation, 1 or both of the variables
may be ordinal or have a distribution that is far from normal.
Significance tests based on the Pearson correlation coefficient
will then no longer be valid, and nonparametric analogs to
these tests are needed. The Fisher z transformation introduced
for the Pearson correlation can be used to perform hypothesis
testing or derive confidence limits.

OTHER CORRELATION COEFFICIENTS
Other correlation coefficients that are worth mentioning are
the Kendall � correlation, Cronbach coefficient �, and partial
correlation.

Kendall � is a nonparametric measure of association based
on the number of concordances and discordances in ranked,
paired observations. Three versions, �-a, �-b, and �-c, differ
in the way ties are handled, with �-b being the most common.
This correlation method is used in the field of testing new
methods against old methods regarding the sensitivity and
specificity. Values range from �1 to 1, with 0 reflecting
absence of correlation.

Another type of correlation coefficient is the Cronbach
coefficient �. This method is commonly used in reliability
studies to determine the internal consistency of a test or the
average correlation of items within the test. Interrelated items
may be summed to obtain an overall score for each partici-
pant. The larger the overall � coefficient, the more likely that
items contribute to a reliable scale. A value of �0.70 is an
acceptable reliability coefficient; smaller reliability coeffi-
cients are seen as inadequate. However, this varies by disci-
pline.

When more than 2 related variables are measured, one
could measure the partial correlation of 2 variables while
controlling for other variables. A partial correlation measures
the strength of a relationship between 2 variables, while
controlling the effect of other variables. For example, age,
weight, and height were measured for a group of middle
school students; a partial correlation can be measured for
weight and height while controlling for age.

REGRESSION ANALYSIS
Regression analysis refers to a set of methods for modeling of
numerical data. A regression model consists of a defined
relationship between a dependent (observed or response)
variable and 1 or more independent (explanatory) variables.
An assumption is that there is a causal or controlling rela-
tionship between the dependent and independent variables.
Statistical models can be classified in several ways, such as
the number of independent variables (simple vs multiple
regression), the linearity of the parameters (linear vs nonlin-
ear regression), or the underlying distribution of the variables
(ordinary vs logistic regression). This section will introduce
each of these types of regression.

The form of a regression model can be depicted as the
following generic equation:

Y � f �X, ��

which simply states that the single dependent variable Y
depends on a set of 1 or more independent variables X � X1

. . . Xn and a set of parameters to be fit: � � �0 . . . �n. Where
f represents a model function (eg, linear, polynomial). The
corresponding regression equation includes an error term i

that represents the deviation of observations from the regres-
sion model:
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Yi � f �Xi , �, i�

Specific forms of these generic equations for the various
types of regression will be introduced in the sections that
follow.

Regression analysis is often applied (inappropriately) with-
out respecting the underlying assumptions. To use regression,
the following assumptions must be considered:
• The sample subjected to regression analysis should be

representative of the population it is drawn from if the
purpose of the regression is to develop prediction equa-
tions. Many data sample collections are convenience sam-
ples, so their ability to represent the population must be
critically evaluated.

• If more than one independent variable is used, the vari-
ables should be linearly independent. A variable is depen-
dent on another if a change in one produces an expected
change in the other. An example would be the QRS vector
magnitude in leads I, II, and aVF of the electrocardiogram.
Any 2 of these precisely determines the third; therefore,
the third measurement is linearly dependent on the other 2,
and its use in a regression model would unnecessarily
complicate the regression or could even invalidate the
regression.

• The independent variables must not have error associated
with their measurement, or the error should be insignifi-
cant compared with that in the dependent variable. This is
perhaps the most common assumption violated in practice.
The ideal situation is when the independent variable is
experimentally (and precisely) set, rather than randomly
observed, followed by measurement of the dependent vari-
able. If significant error is associated with both dependent
and independent variables, then alternative regression
techniques such as orthogonal regression should be used.

• The variance of the error should be consistent across the
range of independent variables. If a scatterplot of the data
shows the spread in the dependent variable increasing with
increasing values of the independent variable, this assump-
tion is violated. In this case, one should consider whether
a transformation of variables or the use of a weighted least
squares technique (not discussed in this article) is appro-
priate.

• The error associated with measurement should be a ran-
dom variable (randomly distributed around zero). This
assumption is usually not assessable a priori but can be
examined. This variable should follow a multivariate nor-
mal distribution, which is difficult to determine, so the
presence of a multivariate normal distribution is usually
assumed if the independent variables are each assumed to
be normally distributed.

METHOD OF LEAST SQUARES
The regression techniques given herein use the method of
least squares. This method provides values of the regression
parameters by minimizing the sum of the squared deviations

of the observations in the Y direction to produce the predic-
tion model:

Ŷi � f �Xi , �̂�

where �̂ is the set of best-fit coefficients, Ŷi is the predicted
value for the given set of independent variables Xi , and f is
the model function (eg, linear, polynomial). In other words,
the �̂ parameters are chosen so that the regression equation
best fits the data, where “best” means that the sum of the
distances between each observed data point and the regres-
sion line, squared, is the smallest possible sum. The best-fit
coefficients are calculated from equations appropriate to each
type of regression analysis. Linear least squares can be per-
formed using linear algebraic techniques, in which the esti-
mation equation is as follows:

� � (XTX)�1XTy

For the reader unfamiliar with matrix notation, XT is the
transpose of the X matrix and (XTX)�1 is the inverse of the
matrix (XTX). Here, the matrix X contains the x values for
each parameter, with each row representing a single obser-
vation, and the column vector y indicating the corresponding
y values. Common statistical packages are capable of solving
these linear equations, as well as nonlinear regressions equa-
tions that require other solution approaches. A simple exam-
ple of this calculation without matrix notation is given herein.

SIMPLE LINEAR REGRESSION
When only one independent variable with linear coefficients
exists, we have the case of simple linear regression, with each
observation indicated as follows:

Yi � �0 � �1Xi1 � i

where the �0 is the intercept, �1 is the slope, and i represents
the statistical error for ith data point. The least squares ap-
proach to solving for estimates of the parameters for this
simple case can be simplified using Cramer equations:

�̂1 �

�
i � 1

n

�xi � x���yi � y��

�
i � 1

n

�xi � x��2

�̂0 � y� � x��̂1

As an example, let us determine if annual income (response
variable Y) can be predicted by a linear function of education
in years (regressor variable X). One can estimate �0, the
intercept, and �1, the slope, using these equations. Table 2
gives the results of simple linear regression analysis per-
formed in SAS statistical software on education level and
salary in Table 1. The overall model goodness of fit is
significant (F � 48.685, P � .0001), indicating that the
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model explains a significant portion of the variation in the
data. The value for R2 of 0.984 indicates that education alone
accounts for 98.4% of the variation in annual salary. The
parameter estimates are �̂0 � �23.3 and �̂1 � 4.17, respec-
tively. The table also contains the t statistics and the corre-
sponding P values for testing whether each parameter is
significantly different from zero. The P values (t � �6.78,
P � .0005, and t � 19.04, P � .0001) indicate that the
intercept and education parameter estimates, respectively, are
highly significant. Finally, the fitted model is as follows:

Annual Salary � 4.17 � Education � 23.3.

For illustration, Figure 2 displays the linear relationship
between annual income and the education level.

MULTIPLE LINEAR REGRESSION ANALYSIS
Many studies in the biomedical sciences involve more than
one explanatory variable and can involve dozens or hundreds
of explanatory variables. Although univariate analysis (sim-
ple linear regression) can be repeated on each of the explan-

atory variables, this approach does not take into account the
variation due to the additional variables and reduces the
ability to find any single explanatory variable as significant.
Multiple linear regression controls for the contribution of
each of the explanatory variables. Assuming each of the
explanatory variables contributes to the model variation, mul-
tiple regression improves the chances of finding the overall
model significance.

The observations in a multiple linear regression model are
indicated as follows:

Yi � �0 � �1Xi1 � �2Xi2 � . . . � �nXin � ei

for n explanatory variables and n 	 1 parameters and where
ei is the statistical error for ith data point. The equations for
analysis of multiple linear regression are more complex than
the simple Cramer equations used for simple linear regres-
sions. The calculation approach is a based on the linear
algebraic approach introduced herein and is beyond the scope
of this article.

The multiple linear regression model assumes that the
explanatory variables are independent of each other. When
there is some dependence, then an interaction results. In this
case, interaction terms can be determined using one of the set
of general linear models, which are more general than the
equations presented herein and allow for the evaluation of
interactions. For example, if a model were to include blood
pressure and potassium intake, then a more general model
should be used because there is an interaction between these
2 variables. The reader is referred to statistical textbooks for
a review of general linear models.

POLYNOMIAL REGRESSION
Data with a single explanatory variable may demonstrate a
curvilinear rather than a linear relationship. An example
would be the relationship between education level and un-
employment rate in Table 1 and Figure 1. Although this could
be explained by a nonlinear equation (see the discussion on
nonlinear regression), often a polynomial relationship that
includes higher powers of the independent variable may
provide a good fit:

Table 2. Summary Output of Simple Linear Regression Using Data in Table 1a

Analysis of Varianceb

Source df Sum of squares Mean square F value P > F

Model 1 2915.83339 2915.83339 362.48 �.0001
Error 6 48.26536 8.04423
Corrected Total 7 2964.09875

Parameter Estimates

Variable df Parameter estimate SE t value P > � t �

Intercept 1 �23.25357 3.43206 �6.78 .0005
Education 1 4.16607 0.21882 19.04 �.0001

a The REG procedure, model 1. Dependent variable is salary.
b R2, 0.9837; and adjusted R2, 0.9810.

Figure 2. Linear regression results of the annual salary vs years of
education.
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Yi � �0 � �1Xi � �2Xi
2 � . . . � �nXi

n � ei

Although at first glance this appears to be a nonlinear equa-
tion, it is linear in its parameters (the � terms) and thus can
be approached as a variation of multiple linear regression. All
that is required is to create the additional independent vari-
ables by computing the powers of the explanatory variable.
Analysis then proceeds as for multiple linear regression.

An example of the use of polynomial regression for the
unemployment vs education data in Table 1 is given as SAS
output in Table 3. This model included the linear and qua-
dratic terms and resulted in a better overall model goodness
of fit (F � 119.6) than for the simple linear regression model
(F � 19.1, output not shown), with all 3 parameters showing
statistical significance. The plot of the fitted equation is given
in Figure 3, where it can be seen that the polynomial fit is
better than a linear fit.

LOGISTIC REGRESSION
Linear regression is applicable to quantitative variables.
However, for a binary outcome variable, such as the predic-
tion of developing cancer or having a stroke, traditional linear
regression is often not appropriate. Often these models have
binary (dichotomous), ordinal (discrete), or nominal (quali-
tative) explanatory variables, such as sex or stage of cancer.
Logistic regression analysis is used to investigate the rela-
tionship between a binary, ordinal, or nominal response and
a set of explanatory variables that may be continuous, ordinal,
or binary.

The logistic function describes a sigmoidal curve that
ranges from 0 to 1, as the dependent variable ranges from �

to 	
, and has a value of 0.5 when the dependent value is 0.
Mathematically, it takes the following form:

��z� �
1

1 � e�z

where z is the dependent variable, � represents the probability
(0 to 1), and e is a constant 2.718. Think of this function as
approximating a step function with value 0 for negative (or

low) values of the dependent variable and 1 for the positive
(or high) values. For logistic regression with a binary out-
come, we replace z with the linear equation of dependent
variables:

z � �0 � �1X1 � �2X2 � . . . � �nXn

This yields the final form of the logistic equation, and the
equivalent form used by some authors:

��z� �
1

1 � e���0 � �1X1 � �2X2 � . . . � �nXn�

�
e��0 � �1X1 � �2X2 � . . . � �nXn�

1 � e��0 � �1X1 � �2X2 � . . . � �nXn�

Conversion to a linear equation in the parameters by loga-
rithmic transformation results in an alternative form:

Table 3. Summary Output of Polynomial Regression Using Data in Table 1a

Analysis of Varianceb

Source df Sum of squares Mean square F Value P > F

Model 2 83.16238 41.58119 119.65
Error 5 1.73762 0.34752
Corrected Total 7 84.90000

Parameter Estimates

Variable df Parameter estimate SE t value P > � t �

Intercept 1 30.09286 2.42679 12.40 �.0001
Education 1 �3.11131 0.34413 �9.04 .0003
Education square 1 0.08304 0.01137 7.30 .0008

a The REG procedure, model 1. Dependent variable is unemployment.
b R2, 0.9795; and adjusted R2, 0.9713.

Figure 3. Polynomial regression line reflecting the analysis in Table 3
(solid line), with a linear regression line shown for comparison (dotted line).
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loge� ��x�

1 � ��x�� � �0 � �1X1 � �2X2 � . . . � �nXn

Linear logistic regression models can be fit to data by the
method of maximum likelihood and are offered in statistical
software packages.

NONLINEAR REGRESSION
The relationship among data variables may not be linear and
may be best explained by a nonlinear model. Common non-
linear models include exponential and power models, but the
investigator may have knowledge that a more complex rela-
tionship underlies the observed data. Fitting nonlinear models
to data requires the use of iterative techniques to minimize the
sum of squared residuals rather than the direct solutions
available for linear models. The reader is referred to relevant
statistical textbooks.

CONCLUSION
In this chapter, Pearson correlation and several nonparametric
correlation methods were introduced. Pearson product-mo-
ment correlation is a parametric measure of a linear relation-
ship between 2 variables. For nonparametric measures of
association, Spearman rank-order correlation uses the ranks

of the data values and Kendall �-b uses the number of
concordances and discordances in paired observations. A
partial correlation provides a measure of the correlation be-
tween 2 variables after controlling the effects of other vari-
ables. Correlation coefficients can tell us if 2 variables are
related, the direction of the relationship, and whether the
relationship is significant. Correlation does not necessarily
mean causation (but it could). Regression can tell us more
about the relationship and be used to predict one from the
other, and multiple regression can adjust for multiple con-
founding variables simultaneously. Simple and multiple lin-
ear regression methods were discussed, including polynomial
regression. Logistic regression models were also presented.
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Measurements of outcome
Steven A. Conrad, MD, PhD,* and Jerry W. McLarty, PhD†

INTRODUCTION
Decisions on the interpretation of medical tests and the adop-
tion of new therapies are part of the foundation of clinical
medicine. New medical tests are constantly arising, particu-
larly as new biomarkers arise from increased understanding
of the genomics of disease. Diagnostic tests represent that
type of medical test that is used to diagnose the presence or
progression of disease. Other types of laboratory tests are
used to aid in the provision of medical care, such as thera-
peutic drug level monitoring, rather than in the diagnosis of
disease. The focus of this discussion is on diagnostic labora-
tory tests, but the principles apply to other types of medical
tests as well.

An important feature of many diagnostic tests is that the
test measure some component involved in the pathophysiol-
ogy of, or the body’s response to, the disease in question. An
example of the former is the measurement of serum iron for
the diagnosis of iron deficiency anemia. Because iron is
required for the production of erythrocytes, it is part of the
pathophysiology. An example of the latter is the measure-
ment of white blood cell count as a marker of infection
because these cells are involved in the response to infection
through their role in the killing and clearance of bacteria.
Other diagnostic tests rely on measurement of a marker not
known to be involved in the pathophysiology but nonetheless
demonstrating a correlation with the disease in question.
Despite the absence of demonstrable pathogenesis, these tests
are still useful if their performance is adequate. An example
of this is angiotensin-converting enzyme level in sarcoidosis
and other chronic diseases, diseases in which the cause is
currently unknown.

DIAGNOSTIC TEST PERFORMANCE
Although not often overtly obvious, the evaluation of a di-
agnostic test must consider both the performance of the test
with respect to the analyte (eg, measurement of C-reactive
protein [CRP] in the serum) and the interpretation of that
result in the context of the presence or absence of disease (eg,
the use of CRP to diagnose infection). The former will
usually be considered in the context of the performance
measures of accuracy and precision of a particular assay,
whereas the latter focuses on the evaluation of using the result

of the assay in a binary classifier (eg, a disease is present or
absent) with measures that include sensitivity, specificity, and
others.

ACCURACY AND PRECISION
Accuracy, also known as validity, is a measure that indicates
how well a test result reflects the actual concentration present
in the sample. An accurate value will be close to the actual
value. Precision, also known as reliability, is a measure that
indicates the reproducibility of repeated measures. On re-
peated measurements, a precise test will have small variabil-
ity.

These concepts are frequently described in terms of a
marksman hitting a target (Fig 1). An accurate and precise
test will have a tight grouping over the center of the bull’s-
eye. An accurate but imprecise test will have a wide grouping
centered over the bull’s-eye. A precise but inaccurate test will
have a tight grouping, but the group center will miss the
bull’s-eye. Finally, an inaccurate and imprecise test will have
a wide grouping that misses the bull’s-eye.

Accuracy and precision are reported in terms of the mean
and variance of the result bias (Fig 2). Bias is defined as
difference between the true, or reference, value and a mea-
surement result. Precision is inversely related to the variance
and is sometimes quantitatively defined as its reciprocal,
although it is usually used in a qualitative context.

Accuracy is also used to describe the performance of a test
result in a binary classifier for disease diagnosis. A binary
classifier maps an input variable (eg, test result) into 1 of 2
classifications (eg, presence or absence of disease). The input
variable is also binary (ie, positive or negative test result).
The procedure for determining a cutoff value that defines a
positive test result is the subject of a later section.

A generic binary classifier is shown in Figure 3. The
diagnostic test result, recorded as positive or negative, is
indicated on the left. The true presence or absence of the
disease or condition according to an independent gold stan-
dard is indicated on the top. The 4 resulting classifications are
given in the center 4 cells. Various measures of performance
are given in the bottom row and right-hand column. Accuracy
in a binary classifier is defined as the proportion of all correct
classifications (true-positive and true-negative results) of all
observations:

Accuracy �
TP � TN

TP � TN � FP � FN

SENSITIVITY AND SPECIFICITY
Sensitivity and specificity are perhaps the 2 most commonly
used measures of binary classifier performance. Sensitivity is
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a measure of the ability of a diagnostic test to detect the
presence of a disease or condition when that condition is
known to exist on the basis of an independent gold standard
evaluation. It is calculated as the proportion of true-positive
results among all patients with the disease:

Sensitivity �
TP

TP � FN

A high sensitivity is a desirable characteristic so that the
disease does not go undiagnosed. A hypothetical example is
given in Figure 4. The diagnostic test is CRP, with a cutoff
value of 5 mg/dL, above which the test result is considered
positive. The condition to be diagnosed is bacteremia, with
blood cultures used as the gold standard. With this classifier,
the sensitivity is 0.72, meaning that if bacteremia is present,
the CRP will be positive in 72% of cases. Sensitivity does not
reflect anything about patients without the disease, so it is
possible that a positive test result can occur in many patients
without the bacteremia. Therefore, a negative result in a
highly sensitive test is most useful for ruling out bacteremia.

Figure 2. Schematic representation of the concepts of accuracy and
precision. Bias is a term that indicates the difference between a single
measurement and the true or reference value. Accuracy is the deviation of the
mean of a set of repeated measures from the true or reference value. The
further the mean from the reference value, the lower the accuracy. Precision
is inversely related to the variance of the set of measured values. A higher
variance represents a lower precision.

Figure 1. Schematic representation of the concepts of accuracy and precision.
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Specificity is a measure of the ability of a diagnostic test to
exclude the presence of a disease or condition when that
condition is known to be absent. It is calculated as the
proportion of true-negative results among all patients without
the disease:

Specificity �
TN

TN � FP

A high specificity is desirable because we want to avoid
diagnosing a condition that does not exist and perhaps insti-
tuting an unnecessary treatment. In the CRP example, the
specificity is 0.80, meaning that we will wrongly diagnose
bacteremia (type I error) in 20% of cases. The higher the
specificity, the less likely we are to initiate unnecessary
antibiotics. Specificity does not reflect anything about pa-
tients with the disease, so it is possible that a negative test
result can occur in many patients with bacteremia. As a result,
a positive result in a highly specific test is most useful for
ruling in bacteremia.

Although it is desirable that a test have both a high sensi-
tivity and high specificity, in practice this is rarely possible.
In a given test the 2 tend to be inversely related, that is, a
highly sensitive test tends to have a low specificity. Lowering
the cutoff value that defines a positive test result will increase
sensitivity and decrease sensitivity and vice versa. A topic of
discussion later in this review (receiver operator characteris-
tic [ROC]) will examine how to best balance these charac-
teristics for a test in choosing a cutoff value.

Highly sensitive tests serve a major role as screening tests,
which tend to catch most patients with the disease but also a
large number without. A positive result in a sensitive screen-
ing test can then be confirmed by a different, more specific
test.

POSITIVE AND NEGATIVE PREDICTIVE VALUES
The measures of sensitivity and specificity described herein
reflect the performance of a test when the disease or condition
is known. The health care professional, however, is presented
with only the test result and wishes to know, given that result,

Figure 3. Generic binary classifier. The classifier columns on the left represent the diagnostic test result indicated as a positive or negative test result. The
classifier rows on the top represent the presence or absence of the disease or condition as determined by a gold standard. The classifier outputs consist of 4 center
states described as true positive (TP), true negative (TN), false positive (FP), and false negative (FN). The values in the bottom row and right-most column
represent performance measures of the classifier, which are discussed in more detail in the text.

VOLUME 103, OCTOBER, 2009 S43



how well the test predicts the disease. For this purpose the
positive predictive value (PPV) and negative predictive value
(NPV) provide useful information.

The PPV of a test indicates the probability that the disease
is present when the test result is positive. It is calculated as
the proportion of true-positive results among all positive test
results (true-positive results plus false-positive results, Fig 3):

PPV �
TP

TP � FP

A PPV of 0.83 in the example in Figure 4 indicates that a
CRP above the cutoff value of 5 mg/dL correctly predicts
bacteremia 83% of the time. A high PPV is desirable so that
when treatment is initiated on the basis of a positive test
result, the chance of providing the treatment to those without
the disease is low.

Similarly, the NPV of a test indicates the probability that
the disease is absent when the test result is negative. It is the
proportion of true-negative results among all negative test
results (true-negative results plus false-negative results, Fig
3):

NPV �
TN

TN � FN

For the CRP result in Figure 4, an NPV indicates that a CRP
below the cutoff value of 5 mg/dL correctly excludes bacte-
remia 68% of the time. A high NPV is desirable so that when
treatment is withheld on the basis of a negative test result, the
number of those with the disease who do not get treated is
low.

Predictive values can be calculated from sensitivity and
specificity as follows:

PPV �
Sensitivity

Sensitivity � �1 � Specificity�

NPV �
Specificity

Specificity � �1 � Sensitivity�

These formulas, however, assume a pretest probability of
disease of 50%. Changing the pretest probability of disease
will change the predictive values.

PREVALENCE-ADJUSTED PREDICTIVE VALUES
Predictive values have a significant drawback in that they are
dependent on the prevalence of the disease in the population
studied. A high prevalence will translate to a high PPV. As an
extreme example, consider that all patients used in the CRP

Figure 4. Example binary classifier for the use of C-reactive protein for the diagnosis of bacteremia.
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study had bacteremia. Because no nonbacteremic patients are
included, there is no chance for false-positive test results, and
the PPV will be 100%, even if sensitivity is very low. Like-
wise, a very low prevalence will translate to a low NPV,
independent of the test specificity.

Prevalence reflects the prior probability of a disease state.
Adjustment of predictive values for prevalence can reduce the
dependence of the values on disease prevalence:

PPVPA �

Sensitivity � Prevalence

Sensitivity � Prevalence � �1 � Specificity� � �1 � Prevalence�

NPVPA �

Specificity � Prevalence

Specificity � Prevalence � �1 � Sensitivity� � �1 � Prevalence�

If one were to assume a prevalence of 0.5 (50%), then one can
see that these 2 formulas will reduce to the 2 preceding ones.

LIKELIHOOD RATIO AND DIAGNOSTIC ODDS
RATIO
The usefulness of a test is further examined by calculation of
the likelihood ratio. This ratio (for a positive test result)
compares the probability of a positive result due to the patient
having the disease to the probability of being healthy:

LR � �
Positive result with disease

Positive result without disease

The plus sign indicates that this likelihood ratio is for a
positive test result. This likelihood ratio is calculated from
sensitivity and specificity:

LR � �
Sensitivity

1 � Specificity

The higher the likelihood ratio for a positive test result, the
better the performance of the test for diagnosing the disease
(minimizing false-positive results). A value of 10 or greater is
considered characteristic of a good test.

If one examines this formula, it is noted that the calculation
uses all 4 of the classification cells in the binary classifier in
Figure 3. This suggests that prevalence information is im-
plicit in the likelihood ratio, and thus the ratio is less sensitive
to prevalence than the PPV and NPV. The likelihood ratio
can also be viewed in the context of the pretest probability in
that the posttest probability of a disease is derived by adjust-
ing the pretest probability with the test result:

Posttest Odds � Pretest Odds � LR �

A likelihood ratio for a negative test result compares the
probability of a negative result in a patient with the disease to
the probability of being healthy:

LR � �
Negative result with disease

Negative result without disease

A low value reflects better performance, and values less than
0.1 are considered desirable. The value is calculated from
sensitivity and specificity as follows:

LR � �
1 � Sensitivity

Specificity

One can combine the likelihood ratios for both positive and
negative test results into the diagnostic odds ratio:

DOR �
LR �

LR �

This value is perhaps the best single performance evaluator
for a given test because it implicitly incorporates the spec-
trum and prevalence of disease. A value greater than 20 is
considered characteristic of a well-performing test.

ROC ANALYSIS
ROC analysis is a method for visualizing classifiers and
selecting them based on their performance. The analysis
consists of constructing a curve in ROC space that is graphed
as the true-positive rate, or sensitivity, plotted against the
false-positive rate, or (1 � specificity). The ROC space has
several characteristics (Fig 5). The line of no discrimination
indicates the location in the space where the true-positive rate
for a given test (at a given cutoff value) is equal to the
false-positive rate, thus unable to discriminate. The triangular
area above the line of no discrimination represents the area in
which the true-positive rate exceeds the false-positive rate,
indicating discriminatory ability. The upper left corner rep-
resents a perfectly discriminatory test so that the closer the
value to this corner, the better the discriminatory perfor-
mance. The area below the line of no discrimination indicates
a test that predicts incorrectly (false-positive rate greater than
true-positive rate). This test mapped to the upper half by
inverting the test result (ie, changing a positive result to a
negative result and vice versa).

The curve is constructed by varying the cutoff value for
classifying a test result as positive from a value below the
lowest test result (sensitivity of 100%, specificity of 0%,
upper right-hand corner) to a value above the highest test
result (sensitivity of 0%, specificity of 100%, lower left-hand
corner) as shown in the direction of the arrow in Figure 6. At
each cutoff value, the sensitivity and specificity are calcu-
lated and the point plotted. The cutoff value that best balances
true- and false-positive rates is the one closest to the line that
is 90° perpendicular to the no-discrimination line (and hence
to the upper left corner). Note that this curve is one in which
a positive test result is one above the cutoff value. For a test
result in which a positive test result is lower than the cutoff,
then the curve is constructed in the opposite direction.
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Other information can be derived from the ROC curve. The
area under the curve (AUC) is a single scalar value that
depicts classifier performance. The AUC is the probability
that the classifier will rank a randomly chosen positive value
higher than a randomly chosen negative value. The higher the
value, the better the average performance. The AUC is also
equivalent to the probability obtained by performing the
Wilcoxon test of ranks on a set of positive and negative test
results. Using a single value to characterize the curve, such as
the AUC, loses information about how the classifier performs
over the range of cutoff values. The discriminatory index (d�,
d-prime) is a measure that captures both the separation of the
curve from the line of no discrimination and its spread. It is
calculated as the distance between the mean of activity dis-
tribution under noise conditions divided by the SD.

SURVIVAL ANALYSIS
Survival analysis is a branch of statistics that deals with
failure in physical and biological systems. Failure in biolog-
ical systems is usually considered in the context of death, but
survival analysis is actually more generalizable to analysis of
time to a specified event. Examples in medicine include the
analysis of survival after heart transplantation, time to failure
of an implantable cardiodefibrillator, and time to develop-
ment of AIDS after human immunodeficiency virus infection.

Survival analysis involves the description and analysis of
survival curves. A survival curve describes the survival of a
sample over time, typically after an identifiable milestone
such as a diagnosis or treatment (Fig 7). A survival function
may be described in the following form:

S�t� � Pr�Ti � t�

Here, S(t) is described as the probability that the time of
failure for a given risk factor i (Ti) is later than time t.

The survival curve begins at zero time and continues for
the period of observation. Survival at zero time is 1, and the
curve is stable or monotonically decreasing over time (which
implies that no one comes back to life!):

S�t0� � S�t1�, t1 � t0

where S(t) denotes the survival at time t. The observation
period may be sufficiently long so that none of the sample is
surviving at the end of the period, but frequently is shorter so
that some of the sample is still surviving at the conclusion of
the study. The survivors at the end of the observation are
denoted censured observations because they represent an
incompletely observed event. In practice, the period of ob-
servation of all of the sample members is not coincident
because the initiating events may not be controllable, such as

Figure 5. Layout of the receiver operating characteristic space. The
true-positive rate (TPR) (sensitivity) is plotted on the dependent axis with the
false-positive rate (FPR) (1 � specificity) plotted on the independent axis.
The line of no discrimination indicates the location in the space where the
FPR for given test (at a given cutoff value) is equal to the TPR, thus unable
to discriminate. The triangular area above the line of no discrimination
represents the area in which the TPR exceeds the FPR, indicating discrim-
inatory ability. The upper left corner represents a perfectly discriminatory
test so that the closer the value to this corner, the better the discriminatory
performance. FNR indicates false-negative rate.

Figure 6. Construction of a receiver operating characteristic curve. The
curve is constructed by varying the cutoff value for classifying a test result
as positive from a value below the lowest test result (sensitivity of 100%,
specificity of 0%, upper right-hand corner) to a value above the highest test
result (sensitivity of 0%, specificity of 100%, lower left-hand corner) as
shown in the direction of the arrow. At each cutoff, the sensitivity and
specificity are calculated and the point clotted. The cutoff value that best
balances true- and false-positive rates is the one closest to the line 90°
perpendicular to the no-discrimination line (and hence to the upper left
corner).
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the timing of a heart transplantation. Thus, patients may enter
into an observation period after the start of the study, and the
time of observation may not be the same for all members of
the sample. These practical constraints pose challenges to the
analysis of survival curves. When the data are presented, the
time scale by convention represents the time from entry into
the observation period rather than absolute time. This aligns
all observation periods and permits graphing the data.

PARAMETRIC SURVIVAL FUNCTIONS
The shape of a typical survival curve is that of a discrete
function, with failure or death events recorded as a vertical
line indicating the decrease in survival and with horizontal
lines between events (Fig 7). As the number of participants
observed increases, the discrete pattern gets smaller and in
the limit becomes a continuous function that represents the
true survival curve for that population and can be fit by
parametric models (Fig 8). Several parametric survival func-
tions have been used to fit to observed survival data. One of
the simplest is the exponential survival function:

S�t� � e � �t

in which � is the single parameter of the model.
Although most survival curves observed in medicine have

an exponential-like form, they are not true exponentials. A
more general survival function that better fits most human
survival curves is the Weibull survival function:

S�t� � e � ��t��

The second parameter � provides an additional degree of
freedom for better-fitting observed curves. In most human
survival curves, � is 1 or less. When � � 1, we have the
special case of the exponential function. Other survival func-

tions, which will not be discussed herein, include the Gomp-
ertz and lognormal functions.

KAPLAN-MEIER ESTIMATOR
The continuous models described herein do not inherently
take into account censured data, and dealing with censured
observations in these models adds complexity. In medical
statistics, the most common approach is to use the nonpara-
metric Kaplan-Meier estimator, which can take into account
censured data. The Kaplan-Meier estimator Ŝ(t), also ex-
pressed as K̂, is the maximum likelihood estimate of the true
survival function S(t):

K̂ � Ŝ�t� � �
ti � t

ni � di

ni
.

In this formula, K̂ represents the probability that an individual
from the given population will live longer than time t (our
observation period). The variable ti is the observed time of an
event (eg, death), ni is the number at risk when the event
occurs (ie, taking into account censured losses), and di is the
number of deaths occurring at time ti. An example of the
enrollment of patients is depicted in Figure 9. This formula
assumes that the values ti are sorted in ascending order
(earliest to latest). It also assumes that censured events are
random. The shape of this curve is the stair-step shaped
discrete curve as shown in Figure 7. Greenwood developed
an estimator of the variance associated with K̂ as follows:

var�K̂� � K̂2 �
ti � t

di

ni �ni � di�
.

The calculation of K̂ is relatively straightforward.
Table 1 gives sample calculations for a hypothetical set of

observations. It shows the step by step calculations to derive

Figure 7. Discrete survival curve graphed as a horizontal step function.
Survival is given as a fraction of the starting survival (eg, 1.0). The units on
the time axis represent the time units used for recording observation (eg,
months for most cancer survival studies).

Figure 8. Continuous survival curve of the exponential form (solid line)
during 60 months. Shown for comparison (dotted line) is the corresponding
discrete survival curve of Figure 7.
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the product of individual probabilities. The resulting curve is
the one shown in Figure 7.

Mean and median survival times can be calculated from the
Kaplan-Meier curve. The median survival time is estimated
by the end point of the interval containing the survival prob-
ability of 0.5. The mean survival time is calculated by the sum
of the products of the probabilities at the end of each interval
and the duration of each interval:

t̄ � � P̂i�1(tt � tt�1)

COMPARISON OF SURVIVAL CURVES
There is frequently a need to compare 2 survival curves, for
example, to determine the effect of a treatment on survival.
Usual regression techniques cannot be used to make this

comparison. The underlying distribution typically follows the
exponential, Weibull, or other distribution, and not a normal
distribution, an assumption required of the usual regression
techniques. The introduction of censoring also is not handled
by the usual regression techniques. Therefore, regression
models that are based on survival curve distributions or are
independent of the underlying distribution are required.

Proportional hazards models can be used to compare sur-
vival curves. The term hazard refers the potential to cause
harm (eg, death or other poor outcome). Hazard rate refers to
the risk of a hazardous outcome. Hazard rates can be obtained
from the Kaplan-Meier curve, with the hazard rate at the ith
interval defined as follows:

�̂i �
q̂i

	i
�

di

	1 � n1

q̂i � failure probability at ith interval

	i � length of the ith interval

di � number of failures in ith interval

ni � number of individuals in the ith interval

A hazard function expresses these hazard rates as a function
of time (�(t)). A proportional hazards function is based on
the assumption that a parameter that influences a hazard does
so in a multiplicative fashion and is independent of the time.
Therefore, a treatment that increases or reduces the hazard
does so equally at all time points expressed by the function.
One can then express the effect parameter c (eg, the param-
eter that quantitatively describes the effect on the hazard) as
the ratio of the 2 hazard functions:

�1�t�

�0�t�
� c or �1�t� � �0�t�gc

Table 1. Sample calculation of the Kaplan-Meier estimator for a hypothetical survival study

Time,
mo

No. at risk
No.

censured
No. of

failures
ni � di

ni

K̂ SD

2 10 1 9/10 0.900 0.095
6 9 1 – – –
8 8 1 7/8 0.787 0.134
9 7 1 – – –
11 6 1 5/6 0.656 0.163
19 5 1 – – –
22 4 1 3/4 0.492 0.187
32 3 1 2/3 0.328 0.183
40 2 1 1/2 0.164 0.147
60 1 1 0 0 NA

Abbreviation: NA, not applicable.

Figure 9. Example of enrollment in a survival analysis trial. The trial runs
for 60 months, but patients enter into the trial at various times during the
interval (each of which corresponds to time 0 in the analysis). Three patients
entered near the end of the trial and were still alive at the end of the
observation period. These are considered censured observations because
insufficient time was available to completely observe their time course.
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COX PROPORTIONAL HAZARDS MODEL
The Cox proportional hazards model does not depend on an
underlying distribution (hazard function) and can be consid-
ered a semiparametric model. It is therefore applicable to
comparing survival curves. The Cox model uses the expo-
nential of a linear function as the effect parameter:

�1�t� � �0�t�geb1z1 � ... � bmzm

After a log transformation, the result is a linearized (log-
linear) model:

log��1�t�

�0�t�
� � b1z1 � ... � bmzm

in which �0(t) is the baseline hazard function and
b1z1 � ... � bmzm is the vector of regression coefficients. The

part of the equation in brackets is called a hazard ratio. For
example, a hazard ratio of 2.0 indicates a double risk of a
particular exposure factor compared with the reference expo-
sure.
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Statistical software programs
Steven A. Conrad, MD, PhD,* and Runhua Shi, MD, PhD†

INTRODUCTION
A number of software applications are available for storage,
analysis, and presentation of data, ranging from productivity
tools such as Microsoft Excel to comprehensive analysis and
reporting packages such as SAS (Statistical Analysis Sys-
tem). Frequently, the tasks of data entry, analysis, and pre-
sentation are each performed with separate tools based on the
familiarity of the user, particularly when multiple individuals
are involved in individual aspects of data handling. It is thus
helpful to gain an understanding of the commonly used tools,
particularly with respect to their limitations and their ability
to exchange data with other applications. With modern com-
puters and powerful software, it is possible to perform anal-
yses that were historically impractical because of computa-
tional intensity. This article reviews some of the commonly
used programs with the goal of guiding the selection of
applications for use in projects. Emphasis will be placed on
data types, entry, and exchange, as well as some of the major
features of several individual applications.

DATA TYPES
All data analysis applications assume data intended for anal-
ysis is in one of several predefined formats. Before any data
collection is initiated, the experimental design should be
reviewed so that the data entry application can be set up for
the required data types. Some applications, such as Excel, by
default are very forgiving with data entry, allowing mixed
data types that the application attempts to interpret. This can
lead to incompatibilities within data sets that can impair data
exchange or even worse can result in analyses that are silently
inaccurate. This section provides an overview of computa-
tional data types (how data are stored and handled by com-
puter systems) and statistical data types (how data are viewed
for analysis by statistical software). Further guidelines will be
provided under the discussion of individual software appli-
cations.

Computational Data Types
Computer software represents and operates on numbers in 1
of 2 basic formats: integer and floating point. Integer values,
as the name suggests, have no fractional component and take
on only integral values of 0, 1, 2, 3, etc. The maximum
integer value available is dependent on the computer archi-

tecture, with modern systems accommodating the ranges
of �231 (�2,147,483,648) for 32-bit systems or �263

(�223,372,036,854,775,808) for 64-bit systems. It is unlikely
that any analysis problem will ever approach these limits.
Floating point includes the storage of numbers in a format
similar to scientific notation, with both a number component
and an exponent. The term floating point indicates that there
is a constant number of significant digits as a result of
“floating” the decimal point while correspondingly altering
the exponent. Current systems use the floating point stan-
dards established by the Institute of Electrical and Electronics
Engineers. The precision of the number component and the
range of the exponent vary with the computer architecture,
with single precision having approximately 7 digits of preci-
sion with exponents ranging from 10�38 to 10�38. Although
data observations will only rarely exceed this range, the
limited precision can be problematic when intermediate val-
ues are generated during computations. Double precision
floating point handles approximately 17 digits of precision
and an exponent range of 10�308 to 10�308, assuring both
improved accuracy and precision of intermediate results dur-
ing computation. Fortunately, floating point computations on
essentially all computer systems default to double precision
so that entry and storage of data in single precision floating
point format can save space without any computational pen-
alties. Some vendors provide software emulation of larger
(128 bit) numbers such as the decimal type, which have a
much higher precision (approximately 29 digits) but lower
exponent range (10�28 to 10�28). It should be recognized that
floating point computations technically are only approximate
due to the fixed precision, but the number of digits in double
precision format makes this approximation of little practical
consequence in most cases.

Dates and times in software applications are represented
internally as a date-time type, that is, a binary interpretation
of the date and time. Unlike floating point numbers, there is
no widely accepted standard for storage of date-time values,
making data interchange among systems difficult. This is
usually accomplished through the conversion to a standard
character format such as “2006–08–23 15:45” that can be
produced and interpreted across systems. With software pro-
grams, such as SAS or SPSS, that have explicit date data
types, the variables can be manipulated arithmetically to
calculate time elapsed between dates, for example.

Statistical Data Types
Statistical analysis applications view data in 1 of 3 contexts.
Observational data types include data that typically represent
the dependent variables in an experimental plan. Parametric
analyses expect floating point values. Integer values can be
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substituted when they represent an appropriate substitute for
floating point values. Nonparametric analyses can use either
type, but integer variables should be used if the data represent
true integral values. Programs that default to floating point
values will require explicit designation of these variables as
integers.

Classification data types are used in statistical models,
such as analysis of variance and logistical regression. These
data typically represent nominal or ordinal factor levels that
are predetermined in the experimental design. Formal statis-
tical programs, such as SAS and S-Plus, allow the designation
of variables as factors. Traditionally, these data are often
coded in numerical format (eg, 1 for male and 2 for female),
but these programs allow the use of descriptive values (eg,
male or female) that make data management far more intui-
tive and realistic. If the application supports descriptive factor
levels or can import character strings representing factor
levels, then taking advantage of this descriptive feature is
advisable. Applications targeted for data entry, such as Ac-
cess or Excel, can take advantage of features such as sup-
porting data tables or automemorized dropdown lists, respec-
tively.

Descriptive data types serve to annotate the values of
variables and factors to facilitate interpretation of presenta-
tion data and graphs but are not variables analyzed directly.
This type is represented by a textual data element that may
be included as a property of the underlying variable or factor
or assigned during reporting or graphing (eg, male � 1,
female � 2).

MICROSOFT EXCEL AND OTHER
SPREADSHEETS
Microsoft Excel is a productivity tool known as a spread-
sheet, providing a grid of cells in which each cell can hold
data values or computational formulas referencing other cells.
The first commercially successful spreadsheet for personal
computers (Apple) was Visicalc. Lotus 1–2-3 was a success-
ful spreadsheet that ran on the IBM personal computer.
Microsoft Excel competed with Lotus 1–2-3 and has became
the currently dominant spreadsheet. Macro languages now
extend spreadsheets by providing a programming infrastruc-
ture.

Because of its column and row grid orientation, Excel has
become a popular platform for recording experimental data.
Its computational capabilities also permit simple summary
statistical calculations using built-in formulas (eg, AVGER-
AGE or STDEV) or more extensive statistical calculations
using add-on packages (eg, Analysis ToolPak). A principal
advantage of Excel is that it is a popular application distrib-
uted with the Microsoft Office suite, widely available on
Windows and Mac platforms. The file format is interchange-
able between these 2 platforms.

Excel has a number of limitations that users should con-
sider when choosing an application for statistical analysis. It
has an unstructured interface. The user has to indicate the
purpose and role of each set of data cells in calculations,

leading to potential for error. It is not suitable for large data
sets. The calculation formulas are interpreted cell by cell and
are optimized for flexibility but not performance. The types
of data that can be stored are limited, consisting of floating
point numbers, date-time values, and character strings. It does
not support true integer storage. Excel is not well suited for
complex data sets, such as hierarchical data, that may require
analysis at several levels (a very common scenario!). Storage
of hierarchical data requires redundancy that can lead to
errors occurring during data entry. A better data storage
platform for this purpose would be a relational database
application such as Microsoft Access or a database server (eg,
Oracle or SQL Server). Spreadsheets are not well suited for
complex analyses. Also, they are not easily adapted to data
that require analysis by groups. A number of graph formats
are provided, but customization of individual graphs is lim-
ited, and thus it is not well suited to generating publication
quality graphs except in simple scenarios.

Suggestions for using Microsoft Excel are as follows:
• Avoid Excel’s attempt at data type interpretation by ex-

plicitly assigning an appropriate format to each column of
data.

• Define integer values as numbers without decimal points
or fractions through Excel’s cell formatting capabilities.

• Do not separate date and time values into separate columns
if both components are required. Use a single column that
defines both and time.

• For text fields it may be important to have separate col-
umns for subfields, such as last name, first name rather
than a single name field. If it were necessary to search for
someone by last name, for example, this is a difficult task
if first and last names are in the same column.

• Keep data columns for data only and resist placing text
notes or computational results in the same columns as data.

• Keep the data type consistent within each column. This
will facilitate exportation to a statistical package if needed
and avoid errors in analysis.

• Leave a cell blank if that data point is missing. If data are
to be exported to a statistical analysis program, that pro-
gram may allow predefined values to be interpreted as
missing values on import.

• Keep column names short so that they are easy to manip-
ulate when imported into analysis or presentation software.
Some packages do not allow spaces in column names, so
consider removing spaces or replacing with a character
such as an underscore.
In summary, Excel is perhaps best suited as a data entry

tool for simple experimental designs, either for exporting to
formal statistical packages or for performing exploratory
analyses.

MICROSOFT ACCESS
Access is a file-based relational database application that is
well suited for data entry, structured data organization, and
flexible data retrieval. As a database application, a wide
variety of data types can be stored, including several variants
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of integers, floating point data with different levels of preci-
sion, date-time data, character data, and fixed and variable-
length textual string data. Through its relational structure,
supporting tables can be used to both offer available choices
for classification variables and ensure that only appropriate
data can be entered. Complex data organizational structures
can be imposed to support data integrity. Its query capabili-
ties allow for flexible retrieval of hierarchical data into a flat
format suitable for a statistical analysis program. These que-
ries can be stored for ease of subsequent data retrieval as the
database increases in size.

Access is based on industry-standard protocols that enable
many statistical analysis programs to use its data directly for
analysis without having to first import it. Data entry is facil-
itated by the creating of data entry forms that guide data entry
and validate it. Because it is file based, the database file can
be transferred easily among computers, but its multiuser
capabilities allow users on different computers to enter or
retrieve data from a common shared database file, eliminating
the need to move the file around to different users.

Access is also part of some Microsoft Office suites and
thus is widely available. It does not offer any statistical
analysis capabilities, so it is only suitable for data entry and
reporting. However, it offers data management capabilities
not available in statistical analysis applications and deserves
strong consideration as a data management tool to partner
with these applications.

Client-server databases, such as Oracle and Microsoft SQL
Server, offer the data handling features of Access but geared
for high-availability multiuser access, such as with an online
Web-based database. Data can be accessed through industry-
standard protocols such as ODBC, but these systems do not
offer the forms capabilities of Access. It is possible, however,
to use Access forms that connect to a database server for a
more custom solution.

SAS SYSTEM
The SAS System (previously known as Statistical Analysis
System) is a comprehensive software package available for
data handling, reporting, and statistical analysis. It was orig-
inally developed for mainframe computers but has since
migrated to essentially all available platforms. It couples a
procedural programming language to a fourth-generation lan-
guage based on an extensive library of data handling and
analysis functions. Graphical user interfaces (GUIs) have
been developed to assist users who want to avoid a program-
ming language construct, but the programming language ap-
proach remains the choice of many if not most SAS users.
The ability to enter data into a dataset using a spreadsheet
format is supported. One of the authors has used SAS on a
desktop computer to perform 30,000 analysis of variance
(ANOVA) calculations of a 3-factor linear model over a total
of 12 million gene expression values with only 6 lines of SAS
code and a solution time of 14 seconds.

SAS is distributed as a set of approximately 30 modules
that add functionality to its core software. The core software

(Base SAS) provides data handling and reporting and basic
summary statistical analyses. Perhaps the most commonly
used module is SAS/STAT, which provides a large number of
commonly used statistical procedures. Some other examples
of the many modules include SAS/INSIGHT for exploratory
data analysis, SAS/IML for matrix manipulation, SAS/
GRAPH for presentation graphics, and SAS/QC for quality
improvement procedures.

Analyses in SAS are performed on datasets, which can be
created programmatically or by importing from other pro-
grams. A simple data step example program to create a
dataset named ONE from inline data values is as follows:

DATA ONE;
INPUT DRUG $ SBP;
DATALINES;
A 140
A 128. . .
B 135
B 156. . . ;
RUN;

where A and B designate 1 of 2 treatments and the 3-digit
numbers represent systolic blood pressure (SBP).

Using the SAS Import procedure to import and generate a
dataset named ONE from a sheet in an Excel workbook is as
follows:

PROC IMPORT DATAFILE� “C:\Data.xls” OUT�ONE;
SHEET�”Sheet1“;
GETNAMES�YES;
RUN;
Different versions of SAS accept only specific versions of

the MS Excel spreadsheet and generally lag somewhat behind
in acceptance of new formats. For example, version 9.1.3
(most recent as of this writing) will accept Microsoft Excel
2003 format but not 2007 format. Verify compatibility before
saving the spreadsheet. Because Excel allows multiple sheets
within a file, the sheet name will have to be specified as
indicated in the above code example.

Familiarity with how SAS expects data in its datasets will
facilitate data importing when data from other applications
such as Excel are imported into SAS. Most SAS procedures
are built on the premise that each line in the dataset represents
a single observation. Each observation may consist of more
than one observed variable, but each variable appears in only
one column. The observation could also include other vari-
ables, such as factor levels and grouping variables. For ex-
ample, data consisting of SBPs from 3 groups to be compared
by an ANOVA would look like the following:

Drug SBP
A 140
A 128
. . .
B 135
B 156
. . .
C 122
C 118
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. . .
Notice that the observed variable SBP appears only once

per entry. This is distinct from how users usually record data
in a program such as Excel:

SBP_A SBP_B SBP_C
140 135 122
128 156 118
. . .
In this case, Excel expects the data to be in 2 or more

columns that will be compared. In SAS, the GROUP variable
is provided to the ANOVA procedure to indicate the treat-
ment group. To move this latter dataset structure into SAS,
the Excel data would either have to be restructured to the
format in the first dataset, or a SAS data step would have to
be created in which the 3 data values per row from dataset
ONE were exported to 3 separate observations into a new
dataset TWO as follows:

DATA TWO; SET ONE;
Drug � ‘A’; SBP � SBP_A; OUTPUT;
Drug � ‘B’; SBP � SBP_B; OUTPUT;
Drug � ‘C’; SBP � SBP_C; OUTPUT;
KEEP Drug SBP;
Statistical analyses are performed by the specification of 1

or more procedure statements that reference a dataset. A SAS
program to perform a balanced 1-way ANOVA follows,
where the CLASS statement identifies the classification vari-
able:

PROC ANOVA DATA�ONE;
CLASS Drug;
MODEL SBP � Drug;
The MODEL statement is the means of specifying statis-

tical models to all of the SAS procedures that analyze linear
and nonlinear models (eg, ANOVA, REG, GLM, and others).
A MODEL statement that specifies a 2-way ANOVA with
interactions is as follows:

MODEL SBP � Drug Condition Drug*Condition;
or equivalently:
MODEL SBP � Drug�Condition;
The original SAS graphing capabilities were designed for

line printers (SAS preceded modern output devices!). The
following procedure will produce a character-based plot of
these data:

PROC PLOT;
PLOT SBP*Drug;
Replacing PLOT with GPLOT will produce a high-reso-

lution graph to the default output device (typically the display
monitor).

The advantages of SAS are numerous, so only a few will
be highlighted. The data manipulation capabilities are ex-
haustive and supported by a 4GL language based on a com-
prehensive procedure library. SAS works with data directly
on disk; thus, it can handle datasets as large as the disk
capacity on the user’s computer or network drive. The code
has been extensively verified and optimized during the past
40 or more years, so it is computationally fast, yielding
trustworthy results. The data analysis procedures are among

the most extensive available, offering analyses not available
in most other packages. It is particularly well suited when
data analysis is a recurring task because the SAS programs
that are developed can be easily invoked on new data.

SAS requires an initial investment of time to learn, and it
is not as intuitive as many other packages. Its graphing
capabilities are also somewhat more limited than many other
statistical packages.

In SAS interactive GUI mode, all basic and many compre-
hensive statistical analyses can be performed, in addition to
graphing and reporting. However, the ability to access all
procedures requires use of the programming language.

SPSS (STATISTICAL PACKAGE FOR THE SOCIAL
SCIENCES)
SPSS was developed at Stanford University in 1968 and
further developed at the University of Chicago. It was so
widely received that it quickly became a small business and
had to separate from the university and become incorporated
in 1975. Although developed initially for social scientists, the
statistical capabilities of SPSS and its relative user-friendli-
ness led to its adoption by statisticians and scientists practic-
ing in many fields. Like SAS, SPSS has a command language
syntax that allows programs to be written and saved for later
use. Initial implementations were on large mainframe com-
puters. For many years, the command language was the only
way to use SPSS. The advent of personal computers dramat-
ically changed the way statistical analysis was performed. In
the mid-1980s, SPSS was the first major statistical package to
be ported to personal computers; it ran under DOS, the
original Microsoft operating system, and still used the com-
mand language interface. In 1992, SPSS was released in a
Windows compatible format and became the first major sta-
tistical package to have a GUI. Today SPSS is available for
most operating systems, including Windows, Macintosh, and
Linux.

SPSS retains its command language interface capabilities,
but most of its features can be used in an interactive graphical
interface using extensive pull-down menus. For the interac-
tive use, data are entered through a spreadsheet-like interface
or imported from a variety of source files, such as Excel,
ASCII text files, and databases via ODBC and SQL. The data
entry screen has 2 options, data and variable modes. Variable
mode allows the addition of labels, missing values, and data
type specification (eg, date, string, categorical or floating
point). Data mode displays the data in a spreadsheet format.
A number of sorting, aggregation, case selection, and data
transformation functions are available. Data can be saved in
a special SPSS format containing all the data entry, labels,
transformations, and other defined characteristics, which
greatly simplify future analysis. Once data entry and data
manipulations are complete, statistical procedures can be
selected through a pull-down menu. For each statistical pro-
cedure chosen, a window is shown that allows variable se-
lection and specification of various options particular to the
chosen analysis. Output is immediately shown on the com-
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puter screen and can be saved in a text format for future
reference. SPSS also contains a powerful graphing capability
that can be used with either command language or graphical
interface. The graphs, usually after some customizing, are
publication quality and can be exported or cut and pasted into
other applications. Some of the graphs for this series of
articles were created with SPSS.

An example of an ANOVA calculation in the command
language follows:

UNIANOVA FVC BY Smoke Race WITH Age BMI
/METHOD�SSTYPE(3)
/INTERCEPT�INCLUDE
/CRITERIA�ALPHA(0.05)
/DESIGN�Age BMI Smoke Race Smoke*Race.
BMI indicates body mass index, and FVC indicates forced

vital capacity. Although this is straightforward for the expe-
rienced statistician, the typical user would have difficulty
remembering the commands, options, and syntax. The scripts
corresponding to the graphical commands can be saved for
duplication or modification at a future time.

For the typical user, the number and size of records that
can be processed with SPSS are virtually unlimited, restricted
only by the hard disk, rapid access memory, and speed of
their processor. One of the authors has processed analyses
with tens of thousands of large records on a Windows per-
sonal computer without problem. SPSS comes in several
modules. The SPSS base module contains the most com-
monly used statistical tools; specialized modules can be
added for different applications, such as classification trees or
neural networks. Student versions are relatively inexpensive
and have the same capabilities as the full SPSS has but with
limitations on the number of cases that can be read (1,500).
For most students, this is not a serious limitation.

In summary, SPSS is a powerful, mature statistical package
that is easy to use. Although SAS is, arguably, the most
widely used by professional statisticians and data analysts,
SPSS at this time has a much more attractive and easy to use
graphical interface. There are few common statistical proce-
dures and data manipulation capabilities not available in
SPSS. Of course, there is always the danger of easy-to-use
statistical programs, not limited to SPSS, for which naive
users may use the wrong analysis or misinterpret the results.

S-PLUS, ‘S,’ AND ‘R’
The S-Plus statistical analysis package is a comprehensive
application based on the ‘S’ language. This language is a
functional and procedural programming language that incor-
porates an extensive library of several thousand functions for
performing data manipulation, mathematical computations,
statistical analysis, and graphing and is well suited to scien-
tific and engineering computations. Complex data objects
can be created and manipulated in S-Plus, and it provides
support for matrix and vector operations, including symbolic
processing, such as those seen in mathematical packages such
as MATLAB. ‘S’ now fully supports an object-oriented pro-
gramming paradigm, a feature not available in most statistical

packages. The software is available on common operating
system platforms (Windows, Macintosh, and Linux)

S-Plus has a powerful user interface that provides an intu-
itive approach to data management and statistical analysis. As
a result, 1-time analyses can be performed without the need to
program in the ‘S’ language. Data are stored in datasets much
like SAS, but some functions expect multiple observations in
each data row. Data can be imported from a variety of sources
or can be directly entered into the dataset in a spreadsheet-
like manner. Functions to transform and reshape data are
provided. Earlier versions operated on data residing in mem-
ory that limited the size of datasets, but current versions have
large dataset capabilities by sharing data between memory
and disk. S-Plus supports a number of data types, including
factors, character strings, integers, single and double preci-
sion floating point, logical, date-time, and complex numbers.

The graphing capabilities in S-plus are extensive and sup-
port interactive modification. For example, graphs can be
easily annotated, the axes can be moved by dragging, and plot
types can be easily changed. It is simple to create multiple
plots per graph and to have multiple graphs per page.

The ‘S’ language was developed by Bell Laboratories (now
Lucent Technologies) in the 1970s and commercially li-
censed since the 1980s. It is currently licensed by Insightful
Corporation (now TIBCO Software Inc) as part of the S-Plus
package. It is an open language in that it can be easily
extended with additional functions and existing functions can
be modified. The ‘R’ language is an open source implemen-
tation of the ‘S’ language licensed under the GNU General
Public License and is largely compatible with the ‘S’ lan-
guage. Being open source, it is widely used, but support is not
available except through public forums. S-Plus can now im-
port packages written in ‘R’.

The ‘S’ language follows a compact functional notation.
Sample ‘S’ code to import data from an Excel spreadsheet
and perform an ANOVA follows (assumes Excel has the data
as a single observation per row with columns named SBP and
Drug):

� dataone �- importData(”a:\\examples\\bp.dat“)
� aov(formula � SBP � Drug, data � dataone)
Numerous options to the functions performing analyses are

available, but they default to commonly used values and thus
need not be included unless different options are needed.
S-Plus uses a different notation than SAS for specifying
statistical models. In this example, the model specification
SBP � Drug indicates that SBP is the dependent variable and
Drug the single independent variable. Polynomial regression
(quadratic) would be specified as SBP � Drug � Drug^2.

A model with main effects and interaction would be spec-
ified as SBP � Drug � Condition � Drug:Condition, or
equivalently SBP � Drug * Condition. Because S is a func-
tional language, function arguments can be replaced with
functions, allowing this to be expressed as a compact, single-
line program:

� aov(formula � SBP � Drug, data � importData(”a:
\\examples\\bp.dat“))
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S-Plus is popular because of its refined user interface and
interactive graphing capabilities and is especially well suited
for scientific data analysis because it incorporates extensive
support for scientific functions and calculations. Several
add-in modules are available for performing microarray data
analysis, wavelet and signal analysis, environmental statis-
tics, and optimization, among others. Using S-Plus from the
GUI is relatively intuitive and supports most statistical tasks.
Learning the ‘S’ language for more advanced analysis re-
quires some investment in time.

CONCLUSION
In addition to a working knowledge of the statistical tests to
be used, optimal use of data management and statistical
software requires an understanding of how data are stored and
manipulated, as well as the strengths and weaknesses of the
analysis software in use. Each statistical software package
offers advantages and disadvantages, and it is not uncommon

to use more than one package for data manipulation and
analysis. Most statistical analysis packages can also be used
to produce tables and graphs in addition to performing anal-
yses. Whatever software package is used, an investment of
time in learning the details of its use will yield many returns,
reduce errors, and improve productivity.
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Glossary of common statistics terms

ANCOVA – analysis of covariance. ANOVA with 1 or
more continuous covariates in addition to factors. The anal-
ysis adjusts for significant covariates before testing for factor
(group) effects.

ANOVA – analysis of variance. A statistical test to com-
pare the means of several groups simultaneously. It assumes
random sampling from independent normally distributed
data. Multiple factors (eg, treatments, groups, etc) can be
considered simultaneously. ANOVA generalizes the Student
t test to more than 2 groups.

Bonferroni correction – a simple, but conservative, method
of adjusting p values in multiple comparisons situations. The
idea is to divide P by the number of planned comparisons to
get a smaller p value. This eliminates the problem of in-
creased type I error (ie, testing until you find something
significant).

Critical value – a preset value of a test statistic (ie, critical
value is 1.96) that reflects the level of probability used for
rejecting the null hypothesis. The value determines the prob-
ability of a type I error, incorrectly rejecting the null hypoth-
esis, that the investigator is willing to accept. This probability
is traditionally called �.

Degrees of freedom – the number of independent observa-
tions associated with an estimate of variance or of a compo-
nent of an ANOVA is free to vary. For example, in an
ANOVA with 3 groups (namely 1, 2, and 3), with a sample
of n 1 observations, the degrees of freedom is n � 1 when
you calculate the mean for this group; 1 df is used in calcu-
lating the mean value from which the variance can be calcu-
lated.

Interval level of measurement – requires that data can
be ordered (unlike nominal data) but also that the distance
between levels is the same. For example, degrees Celsius:
the distance between 10° and 15° is the same as the distance
between 15° and 20°, for example. Subtraction and addi-
tion are meaningful; however, choice of a zero point is
arbitrary.

Kruskal-Wallis test – a nonparametric test to compare
more than 2 groups simultaneously. It is an extension of the
Mann-Whitney 2-sample test.

Mann-Whitney – a nonparametric method for comparing 2
groups. It is based on ranking the raw data and comparing
mean ranks between groups.

Multiple comparisons problem – the inflation of type I
error (the probability of rejecting the null hypothesis when it
is true) that occurs when multiple statistical tests are per-
formed. The more tests that are performed the more likely it
is that a test will be declared significant by chance alone
when it isn’t significant.

Normal distribution – an important probability distribution
completely specified by a mean and SD. The data follow a

familiar symmetric bell-shaped distribution. The normal dis-
tribution is also called a gaussian distribution because it was
first described mathematically by Carl Friedrich Gauss.

Null hypothesis – the hypothesis that assumes no effect of
the experiment (ie, no difference between outcome variables
for the 2 or more groups being studied).

Parameter – a predefined measurement on a population that
is used to characterize a feature of the population. Examples
include the population mean and SD.

Population – the complete collection of items or subjects of
interest in a study that share a common feature to be mea-
sured. A population is usually too large or inaccessible to
enable observations on every subject, thus the need for sam-
pling. An example of a population might be all patients with
hypertension in a given geographic region.

Power – the probability of correctly rejecting the null
hypothesis (eg, concluding that 2 treatments are different
when in fact they are). Power is often expressed as a percent-
age. For study planning, power levels of 80%, 90%, and 95%
are commonly used. The power is equal to 1 � � (see type II
error).

P value – the probability of incorrectly rejecting the null
hypothesis. When p is less than a prespecified number, the
critical value, the null hypothesis is rejected. Traditionally,
p � .05 is grounds for rejecting the null hypothesis, but other
values can be used at the judgment of the investigator, de-
pending on the situation.

Random sampling – a method of selecting subjects in a
manner that eliminates bias. Random number tables gener-
ated by computational methods are commonly used. There
are 5 commonly used methods of random sampling: simple
random sampling, systematic sampling, stratified sampling,
cluster sampling, and multistage sampling.

Repeated-measures ANOVA – a special form of ANOVA
in which 1 or more of the factors is measured repeatedly on
each subject. Because the repeated measures are correlated,
special methods of computing mean square errors are neces-
sary.

Sample – a subset of items or subjects drawn from a
population to draw inferences about the population. The most
common approach to sampling is random sampling.

SD – standard deviation, a measure of variability in a
sample, calculated from the squared distance from the mean
for each value and the sample size in a sample.

SE – standard error of the mean, calculated as follows:
SE � SD/�n, where S is the SD and n is the sample size.

Statistic – a predefined measure obtained on a sample that
characterizes the sample, obtained for the purposes of esti-
mating that measure in the population (see parameter). Ex-
amples include the sample mean and sample SD.
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Statistically significant – a study conclusion based on a p
value less than the prespecified critical value is considered to
be statistically significant. This means that the probability of
rejecting the null hypothesis by chance is acceptably low.
Commonly this means p � .05, but other values may be used.

Student t distribution – a probability distribution similar to
the normal distribution that is used to estimate the mean of
the normal distribution when the sample size is small. The
width of the distribution is dependent on the size of the
sample and approaches the normal distribution when the
sample size gets large.

t test – a test that uses the t statistic with the Student t

distribution to test hypotheses about the mean of a population
or for comparing the means of 2 populations.

Type I error – rejecting the null hypothesis when it is
actually correct (eg, saying a new drug is better than the
standard treatment when in fact the 2 drugs are equivalent).
The probability of a type I error is designated as �.

Type II error – failing to reject the null hypothesis when it
is not true (eg, saying 2 drugs are the same when in fact they
are different). The probability of a type II error is designated
as �.

X� (pronounced “x bar”) – the usual symbol for the mean of
a sample.
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